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CHAPTER 13 
EXPANSION, COMPRESSION AND THE TdS EQUATIONS 

 
 

13.1  Coefficient of Expansion 
 
Notation:   In an ideal world, I’d use α, β, γ respectively for the coefficients of linear, 
area and volume expansion.   Unfortunately we need γ for the ratio of heat capacities. 
Many people use β for volume expansion, so I’ll follow that.  What, then, to use for area 
expansion?  I’ll use b, so we now have  α,  b, β, which is very clumsy.  However, we 
shall rarely need b, so maybe we can survive. 
 
Coefficient of linear expansion:      α 
Coefficient of area expansion:         b 
Coefficient of volume expansion:    β  
 
For small ranges of temperature, the increases in length, area and volume with 
temperature can be represented by 
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Here βα

))) and, b are the approximate coefficients of linear, area and volume expansion 
respectively over the temperature range T1 to T2.  For all three, the units are degree−1 – 
that is Cº −1 or K−1.    
 
For anisotropic crystals, the coefficient may be different in different directions, but for 
isotropic materials we can write 
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Thus for small expansions, .3and2 α≈βα≈ ))))

b  
 
Equations 13.1.1, 2 and 3 define the approximate coefficients over a finite temperature 
range. The coefficients at a particular temperature are defined in terms of the derivatives,  
i.e. 
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The relations b  =  2α  and β  = 3α are exact. 
 
We specify “at constant pressure” because obviously we don’t want, in our definition, to 
prevent the material from expanding by increasing the pressure on it when we heat it. 
 
For solids, the coefficient of linear expansion is usually the appropriate parameter; for 
liquids and gases the volume coefficient is usually appropriate.  For most familiar 
common metals the coefficient of linear expansion is of order 10−5 K−1.  Alloys such as 
the nickel-steel alloy, “invar”, used in clock construction, may have much smaller 
coefficients.  Ordinary glass has a coefficient only a little less than that of metals; pyrex 
and fused quartz have a much smaller expansion – hence their use in telescope mirrors. 
For liquids and gases it is usually the volume coefficient that is quoted. The volume 
coefficient of mercury is about 0.00018 K−1.  Water actually contracts between 0 and 4 
oC, and expands above that temperature.  The volume coefficient of air at 0 oC is 0.0037 
K−1. 
 
At room temperatures and above, the coefficient of linear expansion of metals doesn’t 
vary a huge amount with temperature, but at low temperatures the coefficient of 
expansion varies much more rapidly with temperature – and so does the specific heat 
capacity (see Section 8.10).  Indeed, for a given metal, the variation of expansion 
coefficient and the specific heat capacity vary with temperature in a rather similar 
manner, so that, for a given metal, the ratio α/CP is constant over a large temperature 
range. 
 
Exercise:  A square metal plate has a circular hole of area 300 cm2 in the middle of it.  If 
the coefficient of linear expansion is 2 × 10−5 Cº −1, calculate the area of the hole when 
the temperature of the plate is raised through 100 degrees. 
 
Exercise:  Show that the coefficient of volume expansion of an ideal gas is 1/T.  Compare 
this with the numerical value for air given above. 
 
Although classical thermodynamics does not deal with detailed microscopic processes, it is of interest to 
ask why a solid material expands upon heating.   Let us imagine a crystalline solid to be made up of atoms 
connected to each other by little springs, and each spring is governed by Hooke’s Law, and consequently 
each atom is vibrating in a parabolic potential well and is moving in simple harmonic motion.  If we 
increase the temperature, we increase the amplitude of the vibrations, but we do not change the mean 
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positions of the atoms.  Consequently, in such a model, we would not expect any expansion upon heating.  
However, the real potential is not parabolic, but is shaped, at least qualitatively, something like the 
Lennard-Jones or Morse potentials mentioned in Chapter 6, Section 6.8.   If the material is heated, the 
amplitude of the vibrations increases, and, because of the higher-order terms in the potential, which give 
the potential its asymmetric anharmonic shape, the mean separation of the atoms does indeed increase, and 
so we have expansion.  Thus the expansion upon heating of a solid material is a consequence of the 
anharmonicity of the atomic vibrations and the asymmetry of the potential in which they are moving. 

 
In the next two exercises, I shall be thinking of the expansion of a metal rod as the 
temperature is increased, and the pressure will be assumed to be constant at all times.  
Thus I am going to assume that pressure is not a variable in the discussion, and I shall 

define the coefficient of linear expansion as 
dT
dl
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metal rod increases linearly with temperature, so that 
dT
dl  is independent of temperature.  

It will occur to the reader, on looking at the definition 
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that the coefficient of expansion is independent of temperature.  And if α is independent 
of temperature, l does not increase linearly with temperature.  The next two exercises will 

illustrate that, and will also illustrate how the exact coefficient 
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Exercise.   Suppose that the length of a metal rod increases with temperature according to 
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means that 
dT
dl  and  lα are independent of temperature, and each is equal to l0α0.   Show 

that the coefficient at temperature T is given by  
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Show also that  α) , the approximate coefficient over the temperature range T1 to T2 , is 
equal to the exact coefficient α evaluated at T = T1.   
 
Exercise.   Suppose that the coefficient α is independent of temperature.  Show that the 
length of the rod increases with temperature according to 
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where l0 is the length at 0 K.    Show also that 
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By this time, it may have occurred to the reader that what we have called α) , for all its 
usefulness in the equation ,)](1[ 1212 TTll −α+= )  is not “the” coefficient of expansion at 
temperature T1, nor is it the mean coefficient in the temperature range T1 to T2.  The mean 

coefficient in this range must be defined by ∫ α=−α 2
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exercise: 
 
Exercise.   Suppose that the length of a metal rod increases with temperature according to 
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Of course, you may feel that this distinction between αααα and,, 0

)  is splitting hairs.  
Let us discover for ourselves how much they differ, by putting in some numbers.   Let us 
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suppose that α0  =   1.7  ×  10−5  K−1 and that l0  =  1 m.   Then, assuming that T1 = 280 K  
(6.85 °C) and T2 = 380 K  (106.85 °C), we obtain 
 

 If  
dt
dl  is constant    If  α is constant 

 
 l1  =   1.004760 m    1.004771 m 
 
  
α  (280 K)  =   1.691946 × 10−5  K−1  α  (280 K)  =   1.700000 × 0−5  K−1  

 

α)    =   1.691 946 × 10−5  K−1   α)    =   1.701446 × 10−5  K−1 
 
α    =   1.690 516 × 10−5  K−1   α   =    1.700000 × 0−5  K−1  
 
In general, if the length at T1 is l1, the length l2 at T2 will be given by 
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In the case where α is constant, so it becomes 
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Thus to the first order of small quantities, all varieties of α are equal. 
 
Coefficient of Expansion as a Tensor Quantity.   In Chapter 4, I briefly mentioned that, in the case of an 
anistropic crystal, the coefficient of thermal conduction is a tensor quantity.  The same is true, for an 
anisotropic crystal, of the coefficient of expansion.  Thus, if, during an physics examination, you were 
asked to give examples of tensor quantities, you could give these as examples – though a small risk might 
be involved if your teacher had not thought of these as tensors! The coefficient of expansion of an 
anisotropic crystal may vary in different directions. (In Iceland Spar – calcium carbonate – in one direction 
the coefficient is actually negative.)   If you cut an anisotropic crystal in the form of a cube, whose edges 
are not parallel to the crystallographic axis, the sample, upon heating, will not only expand in volume, but it 
will change in shape to become a non-rectangular parallelepiped.  However, it is possible to cut the crystal 
in the form of a cube such that, upon heating, the sample expands to a rectangular parallelepiped.  The 
edges of the cube (and the resulting parallelepiped) are then parallel to the principal axes of expansion, and 
the coefficients in these directions are the principal coefficients of expansion.  These directions will be 
parallel to the crystallographic axes if the crystal has one of more axes of symmetry (but obviously not 
otherwise).  



 6

 
13.2   Compression 
 
The way in which the volume of a material decreases with pressure at constant 
temperature is described by the isothermal compressibility, κ: 
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Note the necessary minus sign. 
 
Later, we shall need to distinguish between “isothermal compressibility” and “adiabatic 
compressibility”, and we shall need a subscript to the symbol κ in order to distinguish 
between the two.  For the time being, however, κ with no subscript will be taken to mean 
the isothermal compressibility. 
 
 The reciprocal of κ is called the isothermal bulk modulus, sometimes (understandably) 
called the isothermal incompressibility. 
 
Question:  What are the SI units for compressibility and bulk modulus? 
 
Exercise:  Show that the isothermal compressibility of an ideal gas is 1/P.   
 
Exercise:  What is the bulk modulus of air at atmospheric pressure? 
 
 
13.3  Pressure, Temperature and the Difference in Heat Capacities 
 
The way in which the pressure of a material increases with temperature at constant 

volume is described by .
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Exercise:  By making use of equation 2.4.11, show that 
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Exercise:   By making use of equation 10.4.8, show that 
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Thus we can determine VP CC − from measurements of the expansion coefficient and 
the isothermal compressibility without knowing the equation of state.   We have already 
shown that the expansion coefficient of an ideal gas is 1/T, and the isothermal 
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compressibility of an ideal gas is 1/P.  Note that, for an ideal gas, β = 1/T and κ = 1/P, so 
that equation 13.3.2 reduces to R.   
 
Note that, in equation 13.3.2, κ is the isothermal compressibility.  CP and CV may denote 
the molar heat capacities (in which case V is the molar volume); or they may denote the 
specific heat capacities (in which case V is the specific volume or reciprocal of density); 
or they may denote the total heat capacities (in which case V is the total volume). 
 
Recall that the physical reason that CP is greater than CV  is that when a substance is 
heated and expands at constant pressure, it does work, whereas if held at constant volume 
it does no work.  In the case of an ideal gas expanding reversibly, the work done is all 
external work.  A real gas, or a van der Waals gas, on expanding also does internal work 
against  the intermolecular forces. Therefore CP is greater than CV  by more than R − but 
only a little more, because the intermolecular (van der Waals) forces are not very large.  
In Chapter 10 we developed an explicit expression for CP  −  CV for a van der Waals gas 
(equation 10.4.10).  When a solid is heated, it expands very little compared with a gas, 
and hence does very little external work.  The intermolecular forces, however, are quite 
large, and hence an expanding solid does quite a lot of internal work.  Thus for a gas, 
most of the work of expansion is external; for a solid, most of the work of expansion is 
internal. 
 
  Here are order-of-magnitude figures for copper at room temperature (for exact figures, 
we would have to specify the exact temperature). 
  
Specific heat capacity at constant pressure = 384 J K−1 kg−1  
Molar mass (“atomic weight”)                    = 63.5 kg kmole−1 
Molar heat capacity at constant pressure     =  24400 J K−1 kmole−1 = 2.93 R. 
Density                                                         =  8960 kg m−3 
Molar volume             =  7.09 × 10−3 m3 kmole−1 
Coefficient of linear expansion                   =   1.67 × 10−5 K−1 

Coefficient of volume expansion                =   5.00 × 10−5 K−1 
Isothermal bulk modulus          =   1.40 × 1011 Pa 
Isothermal compressibility                          =   7.14 × 10−12  Pa−1 
 
Equation  13.3.2 will give us, at a temperature of 20 °C = 293.15 K, 
CP  −  CV  (molar)          =  728 J K−1 kmole−1  =  0.09R.  

CP  −  CV  (specific)          =    11 J K−1 kg−1    
This is only about 3 percent of CP. 
 
Equation 13.3.2 raises an interesting problem concerning water.  It will be understood 
that the reason why CP for an ideal gas is greater than CV is as follows.  When heat is 
added to an ideal gas at constant volume, all of the heat goes into raising the temperature.  
When heat is added at constant pressure, however, some of the heat goes into doing 
external work.  Hence .VP CC >   That argument is correct.  However... 
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 Water at 2 ºC (or indeed at any temperature in the range between 0 ºC and 4 ºC) 
contracts upon heating (i.e. β is negative), so that, if we add heat at constant pressure, 
work is done on the water by its surroundings, and hence (we might argue, though 
erroneously), for water at 2 ºC, .VP CC <   Equation 13.3.2, however, shows that 

VP CC ≥ regardless of the sign of β.  (The equality applies where β = 0, which occurs at 4 
ºC.)  Thus we have a paradox. 
 
In fact, equation 13.3.2 is correct, and, at 2 ºC, .VP CC >  The explanation is as follows.  
It is true that, when heat is added to an ideal gas at constant volume, all of the heat goes 
into raising the temperature – but this is true only for an ideal gas in which the internal 
energy is all kinetic.  But for real substances, including water, the correct statement 
(which is really just the first law of thermodynamics) is that when heat is added to a 
substance at constant volume, all of the heat goes into raising the internal energy, and, for 
a nonideal substance the internal energy is partly kinetic and partly potential.  When we 
add heat isobarically to water at 2 ºC, more of this heat goes into increasing the potential  
energy than if we add heat isochorically, and hence CP is still greater than CV.   A very 
clear account of this problem, from both the thermodynamical and statistical mechanical 
points of view, is to be found in a paper by McDougall and Feistel, Deep-Sea Research I 
50, 1523 (2003). 
 
(You may remember a similar apparent paradox in connection with surface tension of a 
liquid.  When we do work adiabatically and reversibly to create new surface, the 
temperature drops.  So doing work on a system or adding heat to it doesn’t necessarily 
result in a rise in temperature.  It does result in an increase of internal energy, which 
include potential energy.) 
 
13.4  The TdS Equations 
 
The three TdS equations have been known to generations of students as the “tedious 
equations” − though they are not at all tedious to a true lover of thermodynamics, 
because, among other things, they enable us to calculate the change of entropy during 
various reversible processes in terms of either dV and dT,  or  dP and dT,  or dV and dP, 
and even in terms of directly measurable quantities such as the coefficient of expansion 
and the bulk modulus. 
 
i.)   We can express entropy in terms of any two of PVT.  Let us first express entropy as a 
function of V and T 
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From a Maxwell relation (equation 12.6.15), .
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This is the first of the TdS equations. 
 
 
ii.)   This time, let us express entropy as a function of P and T 
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This is the second of the TdS equations. 
 
 
iii.)   If we express entropy as a function of P and V (recall that we can choose to express 
a function of state as a function of any two of P, V or T) we have 
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And in a constant pressure process, TdS  = CPdT, so that  .
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This is the third of the TdS equations. 
 
 
 
 
 
 
 
In summary, then, these are the three TdS equations: 
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These equations can be used, for example, to calculate, by integration, the change of 
entropy between one state and another, provided that the equation of state is known in 
order that we can evaluate the partial derivatives. 
 
 
13.5   Expansion, Compression and the TdS Equations 
 
It will be recalled, from equations 13.3.1 and 13.1.8, that 
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With these, the TdS equations become 
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These equations can be used, for example, to calculate, by integration, the change of 
entropy between one state and another, provided that β, κ and the heat capacities are 
known as functions of temperature and pressure or specific volume.  You don’t even have 
to know the equation of state. 
 
They won’t tell us anything about an ideal gas that we don’t already know, but let’s just 
apply them to an ideal gas in any case, just to see if we have made any mistakes so far. 
For an ideal gas, as we saw in Sections 13.1 and 13.2, β  =  1/T and κ  =  1/P.  The first 
two TdS equations become 
 
    dTCPdVTdS V+=       13.5.6 
 
and    .dTCVdPTdS P+−=       13.5.7 
 
That is to say,     dUPdVTdS +=       13.5.8 
 
and      dHVdPTdS +−=        13.5.9 
 
so all is well with the world so far.  The third equation becomes 
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V
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P
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For a reversible adiabatic process, dS = 0, so what do you get if you integrate equation 
13.5.10 for a reversible adiabatic process for an ideal gas?  This should complete your 
happiness – though there is more to come. 
 
If a material (be it solid, liquid or gas) is compressed reversibly and adiabatically (i.e. dS 
= 0), equation 13.5.3 will tell you how the temperature changes with volume: 
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If it is the pressure, rather than the volume, that is changed reversibly and adiabatically, 
equation 13.5.4 will tell you how the temperature changes with pressure: 
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In equation 13.5.11, κ is the isothermal compressibility, defined in equation 13.2.1 as 
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partial derivative.  Are the words adiabatic and isentropic synonymous?)  This is going 
to be less that the isothermal compressibility, because, if you try to compress a material 
adiabatically it will become hot and therefore not be as readily compressible as if the 
compression were isothermal.  Now refer to equation 13.5.5, 
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recalling that in a reversible adiabatic process S  is constant, and this equation then gives 
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1 is the adiabatic compressibility, and 

,/ γ=VP CC so we arrive at 
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where γ is the ratio of the isobaric and isochoric heat capacities.   In particular, recall that, 
for an ideal gas, κiso  =  1/P.  Hence, for an ideal gas,  κad = 1/(γP). 
 

In equation 13.3.2, we deduced the relation .
iso

2

κ
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=−
TVCC VP   In equation 13.5.13, we 

have deduced an expression for the ratio of the isothermal to adiabatic compressibilities, 
the isothermal compressibility being greater.  Combining these now with VP CC /=γ , 
we can now deduce an expression for the difference between the isothermal and adiabatic 
compressibilities, namely: 
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In terms of bulk modulus B, which is the reciprocal of compressibility, equations 13.5.13 

and 13.5.14 are, of course,  γ=
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Comparison of equations 13.3.2 and 13.5 14 shows that 
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Sir Isaac Newton in his Principia correctly deduced that the speed of sound in a gas is 
equal to ,)/(1 ρκ  where ρ is the density, and without making any distinction between 
κiso and κad .  The measured speed was faster than predicted from his theory, and Newton 
tried, not completely successfully, to account for the difference.  I haven’t gone into the 
history, but there is a story – probably apocryphal – that, in order to secure agreement 
between observation and theory, he “fudged his lab” and “adjusted” his experimental 
results a little.  But the trouble was not with the experimental results.  If you take for κ 
the isothermal value, namely 1/P for an ideal gas (to which air approximates quite well 
over the small pressure changes involved), the theory gives ρ/P  for the sound speed.  
In fact, however, the compressions and rarefactions in a sound wave are so rapid that they 
are, in effect, adiabatic, so that it is the adiabatic compressibility κad that should be used, 
giving ργ /P  as the theoretical expression, which agrees well with the observed speed. 
 
 
13.6 Young’s Modulus 
  
This Section is under revision. 
 
 
13.7    Bulk and Rigidity (Shear) Moduli  
 
When we are discussing the bulk modulus of a material we are usually thinking in terms 
of applying pressure and noting the compression, so the adiabatic bulk modulus is usually 
greater than the isothermal bulk modulus.  We could in principle also imagine a situation 
in which we are moving a material into a vacuum, thus decreasing the external pressure, 
and then measuring the resulting expansion.  In that case we would find that the adiabatic 
bulk modulus is less than the isothermal bulk modulus – but that is a rather artificial 
situation.  In Section 13.5 we derived (see equation 13.5.14) the usual relation for 
compression: 
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adiso PC
T

BB ρ
β

=−      13.7.1 

 
in which β is the volume coefficient of expansion, and CP is the specific heat capacity at 
constant pressure.   (Compare this with equations 13.6.12 and 13.6.20.) 
 
We now must ask ourselves what is the difference between the adiabatic and isothermal 
rigidity moduli (also known as shear modulus).  If you are unfamiliar with the rigidity 
modulus, see my Classical Mechanics notes, Chapter 20, Section 20.3. 
 
The rigidity modulus involves no change in volume or length, and hence there is no 
difference between the adiabatic and isothermal rigidity moduli. 
 
 
 
 
 
13.8    Volume, Temperature and the Grüneisen Parameter 
 
If you compress a material adiabatically and reversibly (i.e. isentropically) its 
temperature goes up.  The amount by which it goes up can be represented by the partial 

derivative .
SV

T








∂
∂  Here, V could mean the total volume , the specific volume or the 

molar volume, according to context, and you would have to specify your units 
accordingly.  The derivative is negative, because the temperature goes up as the volume 
is decreased.   
 
[Compare this with the definition of the volume coefficient of expansion  

,1

PT
V

V








∂
∂

=β  which is positive.  Think about the difference.] 

 
A dimensionless version which also expresses the variation of temperature with volume 

would be 
SS V

T
V
T

T
V









∂
∂

=







∂
∂

ln
ln , and here there is no need to specify whether V means 

total, specific or molar.  The derivative could also be written as ,
ln
ln

S

T








ρ∂

∂
−  where ρ is 

the density.   The positive value, 
SS

T
V
T









ρ∂

∂
+=








∂
∂

−
ln
ln

ln
ln is called the Grüneisen 

parameter.   We have already used the symbols G, g, Γ and γ for various things in these 
notes, so I am stuck for a suitable symbol.  Sometimes non-italic symbols are used for 
dimensionless parameters, such as R for Reynolds number in aerodynamics.  Let’s try Gr 
for the Grüneisen parameter. 
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For an ideal gas, the relation between volume and temperature in a reversible adiabatic 
expansion is 1−γTV   =  constant, and therefore the Grüneisen parameter for an ideal gas 
is γ  −  1.    
 
In thinking about volume and temperature changes, we often have some sort of a gas 
(ideal or otherwise) in mind.  However, geophysicists have to deal with very large 
pressures in the interior of the Earth, where volume and temperature changes of solids 
under pressure are not negligible, and geophysicists often make use of the Grüneisen 
parameter for solid materials. 
 
For a bit of practice in deriving relationships between some of the quantities described in 
this chapter, see if you can show that 
 

adiso
Gr

κρ
β

=
κρ

β
=

PV CC
    13.8.1 

 
and          .Gr1 Tβ+=γ     13.8.2 
 
If ρ in these questions stands for density (mass per unit volume), what, precisely, are CV 
and CP?   Total, specific or molar? Or does it not matter?   What do these equations 
become in the case of an ideal gas? 
 
 
 
 
 
 
 
 
 
 
 


