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CHAPTER 8 

HEAT CAPACITY, AND THE EXPANSION OF GASES 

 

 

 

8.1   Heat Capacity 

 

Definition:  The heat capacity of a body is the quantity of heat required to raise its temperature by 

one degree.  Its SI unit is J K
−1

. 

 

Definition:  The specific heat capacity of a substance is the quantity of heat required to raise the 

temperature of unit mass of it by one degree.  Its SI unit is J kg
−1

 K
−1

. 

 

Definition:  The molar heat capacity of a substance is the quantity of heat required to raise the 

temperature of a molar amount of it by one degree.  (I say "molar amount". In CGS calculations we 

use the mole – about 6 × 10
23

 molecules.  In SI calculations we use the kilomole – about 6 × 10
26

 

molecules.
 
)
  
 Its SI unit is J kilomole

−1
 K

−1
. 

 

Some numerical values of specific and molar heat capacity are given in Section 8.7.  

 
One sometimes hears the expression "the specific heat" of a substance.  One presumes that what is meant is the specific 

heat capacity. 

 

The above definitions at first glance seem easy to understand – but we need to be careful.  Let us 

imagine again a gas held in a cylinder by a movable piston.  I choose a gas because its volume can 

change very obviously on application of pressure or by changing the temperature.  The volume of a 

solid or a liquid will also change, but only by a small and less obvious amount.  If you supply heat 

to a gas that is allowed to expand at constant pressure, some of the heat that you supply goes to 

doing external work, and only a part of it goes towards raising the temperature of the gas.  On the 

other hand, if you keep the volume of the gas constant, all of the heat you supply goes towards 

raising the temperature.  Consequently, more heat is required to raise the temperature of the gas by 

one degree if the gas is allowed to expand at constant pressure than if the gas is held at constant 

volume and not allowed to expand.   Thus the heat capacity of a gas (or any substance for that 

matter) is greater if the heat is supplied at constant pressure than if it is supplied at constant 

volume.  Thus we have to distinguish between the heat capacity at constant volume CV and the heat 

capacity at constant pressure CP, and, as we have seen CP  >  CV. 

 

If the heat is added at constant volume, we have simply that dU  =  dQ  =  CV dT. 

 

One other detail that requires some care is this.  The specific heat capacity of a substance may well 

vary with temperature, even, in principle, over the temperature range of one degree mentioned in 

our definitions.  Therefore, we really have to define the heat capacity at a given temperature in 

terms of the heat required to raise the temperature by an infinitesimal amount rather than through a 

finite range.  Thus it is perhaps easiest to define heat capacity at constant volume in symbols as 

follows: 

 



 2 

     .
V

V
T

U
C 









∂

∂
=      8.1.1 

(Warning:  Do not assume that .)/( PP TUC ∂∂=   That isn’t so.  The correct expression is given as 

equation 9.1.13  in Chapter 9 on Enthalpy.) 

 

As with many equations, this applies equally whether we are dealing with total, specific or molar 

heat capacity or internal energy. 

 

If heat is supplied at constant pressure, some of the heat supplied goes into doing external work 

PdV, and therefore 

 

         C dT C dT P dVP V= + .     8.1.2 

 

For a mole of an ideal gas at constant pressure, P dV  =  R dT, and therefore, for an ideal gas, 

 

     C C RP V= + ,     8.1.3 

 

where, in this equation, CP and CV are the molar heat capacities of an ideal gas. 

 

We shall see in Chapter 10, Section 10.4, if we can develop a more general expression for the 

difference in the heat capacities of any substance, not just an ideal gas.  But let us continue, for the 

time being with an ideal gas. 

 

In an ideal gas, there are no forces between the molecules, and hence no potential energy terms 

involving the intermolecular distances in the calculation of the internal energy. In other words, the 

internal energy is independent of the distances between molecules, and hence the internal energy is 

independent of the volume of a fixed mass of gas if the temperature (hence kinetic energy) is kept 

constant.  That is, for an ideal gas, 

 

           .0=
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∂

TV

U
     8.1.4 

 

Let us think now of a monatomic gas, such as helium or argon.  When we supply heat to (and raise 

the temperature of) an ideal monatomic gas, we are increasing the translational kinetic energy of 

the molecules.  If the gas is ideal, so that there are no intermolecular forces then all of the 

introduced heat goes into increasing the translational kinetic energy (i.e. the temperature) of the 

gas.  (Recall that a gas at low pressure is nearly ideal, because then the molecules are so far apart 

that any intermolecular forces are negligible.)  Recall from Section 6.5 that the translational kinetic 

energy of the molecules in a mole of gas is 3
2

RT .  The molar internal energy, then, of an ideal 

monatomic gas is 

 

     U RT= +3
2

constant.    8.1.5 

 

From equation 8.1.1, therefore, the molar heat capacity at constant volume of an ideal monatomic 

gas is 
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         C RV = 3
2

.       8.1.6 

 

The molar heat capacities of real monatomic gases when well above their critical temperatures are 

indeed found to be close to this. 

 

When we are dealing with polyatomic gases, however, the heat capacities are greater.  This is 

because, when we supply heat, only some of it goes towards increasing the translational kinetic 

energy (temperature) of the gas.  Some of the heat goes into increasing the rotational kinetic energy 

of the molecules.  (Wait!  Some of you are asking yourselves:  "But do not atoms of helium and 

argon rotate?  Do they not have rotational kinetic energy?"  These are very good questions, but I am 

going to pretend for the moment that I haven't heard you.  Perhaps, before I come to the end of this 

section, I may listen.) 

 

When two molecules collide head on, there is an interchange of translational kinetic energy 

between them.  But if they have a glancing collision, there is an exchange of translational and 

rotational kinetic energies.  If millions of molecules are colliding with each other, there is a 

constant exchange of translational and rotational kinetic energies.  When a dynamic equilibrium has 

been established, the kinetic energy will be shared equally between each degree of translational and 

rotational kinetic energy.  (This is the Principle of Equipartition of Energy.)   We know that the 

translational kinetic energy per mole is 3
2

RT  - that is, 1
2

RT  for each translational degree of freedom 

( 1
2

1
2

1
2

mu m mw2 2 2, ,v ).  There is an equal amount of kinetic energy of rotation (with an exception 

to be noted below), so that the internal energy associated with a mole of a polyatomic gas is 3RT 

plus a constant, and consequently the molar heat capacity of an ideal polyatomic gas is 

 

      CV  =  3R.     8.1.7 

 

It takes twice the heat to raise the temperature of a mole of a polyatomic gas compared with a 

monatomic gas. 

 

The exception we mentioned is for linear molecules.   These are molecules in which all the atoms 

are in a straight line.  This necessarily includes, of course, all diatomic molecules (the oxygen and 

nitrogen in the air that we breathe) as well as some heavier molecules such as CO2, in which all the 

molecules (at least in the ground state) are in a straight line. (The molecule H2O is not linear.)  In 

linear molecules, the moment of inertia about the internuclear axis is negligible, so there are only 

two degrees of rotational freedom, corresponding to rotation about two axes perpendicular to each 

other and to the internuclear axis.  Thus there are five degrees of freedom in all (three of translation 

and two of rotation) and the kinetic energy associated with each degree of freedom is 1
2

RT  per 

mole for a total of 5
2

RT  per mole, so the molar heat capacity is 

       

        C RV = 5
2

.      8.1.8 

 

    Summary:  A monatomic gas has three degrees of translational freedom and none of rotational 

freedom, and so we would expect its molar heat capacity to be 3
2

R. 
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 A diatomic or linear polyatomic gas has three degrees of translational freedom and two of 

rotational freedom, and so we would expect its molar heat capacity to be 5
2

R. 

 

A nonlinear polyatomic gas has three degrees of translational freedom and three of rotational 

freedom, and so we would expect its molar heat capacity to be 3R. 

 

How do real gases behave compared with these predictions?  The monatomic gases (helium, neon, 

argon, etc) behave very well.  The diatomic gases quite well, although at room temperature the 

molar heat capacities of some of them are a little higher than predicted, while at low temperatures 

the molar heat capacities drop below what is predicted.  Indeed below about 60 K the molar heat 

capacity of hydrogen drops to about 3
2

R  - just as if it had become a monatomic gas or, though still 

diatomic, the molecules were somehow prevented from rotating.  The molar heat capacities of 

nonlinear polyatomic molecules tend to be rather higher than predicted. 

 

First let us deal with why the molar heat capacities of polyatomic molecules and some diatomic 

molecules are a bit higher than predicted.  This is because the molecules may vibrate. When we add 

heat, some of the heat is used up in increasing the rate of rotation of the molecules, and some is 

used up in causing them to vibrate, so it needs a lot of heat to cause a rise in temperature 

(translational kinetic energy).  The possibility of vibration adds more degrees of freedom, and 

another 1
2

R  to the molar heat capacity for each extra degree of vibration.  To be strictly correct, the 

"number of degrees of freedom" in this connection is the number of squared terms that contribute to 

the internal energy.  Each vibrational mode adds two such terms – a kinetic energy term and a 

potential energy term. This means that the predicted molar heat capacity for a nonrigid diatomic 

molecular gas would be 7
2

R.  Polyatomic gases have many vibrational modes and consequently a 

higher molar heat capacity. 

 

So – why is the molar heat capacity of molecular hydrogen not 7
2

R  at all temperatures?  Why is it 

about 5
2

R  at room temperature, as if it were a rigid molecule that could not vibrate?  True, at higher 

temperatures the molar heat capacity does increase, though it never quite reaches 7
2

R  before the 

molecule dissociates.  Why does the molar heat capacity decrease at lower temperatures, reaching 
3
2

R  at 60 K, as if it could no longer rotate? 

 

Let us ask some further questions, which are related to these.  We said earlier that a monatomic gas 

has no rotational degrees of freedom.  Why not?  True, the moment of inertia is very small, but, if 

we accept the principle of equipartition of energy, should not each rotational degree of freedom 

hold as much energy as each translational degree of freedom?  Also, we said that a linear molecule 

has just two degrees of freedom.  It is true that the moment of inertia about the internuclear axis is 

very small.  This is not the same thing as saying that it cannot rotate about that axis.  If all degrees 

of freedom equally share the internal energy, then the angular speed about the internuclear axis 

must be correspondingly large. 

 

Now I could make various excuses about these problems.  The fact is, however, that the classical 

model that I have described may look good at first, but, when we start asking these awkward 

questions, it becomes evident that the classical theory really fails to answer them satisfactorily.  In 

truth, the failure of classical theory to explain the observed values of the molar heat capacities of 
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gases was one of the several failures of classical theory that helped to give rise to the birth of 

quantum theory.  Quantum theory in fact accounts spectacularly well and in detail for the specific 

heat capacities of molecules and how the heat capacities vary with temperature.  This topic is often 

dealt with on courses on statistical thermodynamics, and I just briefly mention the explanation here.  

The solution of Schrödinger's equation for a rigid rotator shows that the rotational energy can exist 

with a number of separated discrete values, and the population of these rotational energy levels is 

governed by Boltzmann's equation in just the same way as the population of the electronic energy 

levels in an atom.  At temperatures of 60 K, the spacing of the rotational energy levels is large 

compared with kT, and so the rotational energy levels are unoccupied.  Thus, in that very real sense, 

the hydrogen molecule does indeed stop rotating at low temperatures.  The spacing of the energy 

level is inversely proportional to the moment of inertia, and the moment of inertia about the 

internuclear axis is so small that the energy of the first rotational energy level about this axis is 

larger than the dissociation energy of the molecule, so indeed the molecule cannot rotate about the 

internuclear axis.   Vibrational energy is also quantised, but the spacing of the vibrational levels is 

much larger than the spacing of the rotational energy levels, so they are not excited at room 

temperatures.   This has been only a brief account of why classical mechanics fails and quantum 

mechanics succeeds in correctly predicting the observed heat capacities of gases.   It is a very 

interesting subject, and the reader may well want to learn more about it – but that will have to be 

elsewhere. 

    

 

8.2  Ratio of the Heat Capacities of a Gas 

 

The ratio of the heat capacities of a gas at constant pressure and at constant volume plays an 

important part in many calculations involving the expansion and contraction of gases.  The ratio 

appears, for one example of many that could be chosen, in the theoretical expression for the speed 

of sound in a gas.  The higher the ratio CP/CV, the faster the speed of sound.  The ratio is generally 

given the symbol γ: 

 

      
C

C

P

V

= γ .     8.2.1 

 

Apart from any other reason, one reason for its importance is that the ratio is easier to measure 

precisely than either heat capacity separately.  For example, you could determine it from a 

measurement of the speed of sound, which is easier than adding heat to a sample of gas at constant 

pressure and again at constant volume and measuring the rise in temperature.  

 

We have seen that, for gases that behave as we would like them to behave, the molar heat capacities 

CV at constant temperatures for monatomic, diatomic and nonlinear polyatomic gases without 

molecular vibration are respectively 3
2

5
2

3R R R, and .  And since, for an ideal gas, C C RP V= + , 

(equation 8.1.3), we expect the corresponding values for CP to be 5
2

7
2

4R R R, .and  Thus the 

expected values of γ are 5/3, 7/5 and 4/3. 
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8.3   Reversible Isothermal Expansion of an Ideal Gas 

 

An ideal gas obeys the equation of state  PV = RT (V = molar volume), so that, if a fixed mass of 

gas  kept at constant temperature is compressed or allowed to expand, its pressure and volume will 

vary according to PV = constant.  That is, Boyle's Law.   We can calculate the work done by a mole 

of an ideal gas in a reversible isothermal expansion from volume V1 to volume V2 as follows. 

 

      )./ln( 12
2

1

2

1
VVRT

V

dV
RTdVPW

V

V

V

V
=∫=∫=   8.3.1 

 

 

8.4   Reversible Adiabatic Expansion of an Ideal Gas 

 

An adiabatic process is one in which no heat enters or leaves the system, and hence, for a reversible 

adiabatic process the first law takes the form dU P dV= − .  But from equation 8.1.1, 

.)/( VV TUC ∂∂=   But the internal energy of an ideal gas depends only on the temperature and is 

independent of the volume (because there are no intermolecular forces), and so, for an ideal gas, 

,/ dTdUCV =  and so we have .dTCdU V=   Thus for a reversible adiabatic process and an ideal 

gas, C dT P dVV = − . (The minus sign shows that as V increases, T decreases, as expected.) But 

for a mole of an ideal gas, PV RT C C TP V= = −( ) , or P C C T VP V= −( ) / .   

 

Therefore    C dT C C T dV VV P V= − −( ) / .    8.4.1 

 

(You may be wondering whether C and V are molar, specific or total quantities.  If you look at the 

equation you'll agree that it is valid whether the volume and heat capacities are molar, specific or 

total.) 

 

Separate the variables and write γ for CP/CV: 

 

     
dT

T

dV

V
+ − =( ) .γ 1 0      8.4.2 

 

Integrate:          TV
γ − =1 constant .    8.4.3 

 

This shows how temperature and volume of an ideal gas vary during a reversible adiabatic 

expansion or compression. If the gas expands, the temperature goes down.  If the gas is 

compressed, it becomes hot.  Of course the pressure varies also, and the ideal gas conforms to the 

equation PV/T = constant.  On elimination of T we obtain 

 

          PV
γ = constant .     8.4.4 

 

On elimination of V we obtain 

 

          P T
− − =( )γ γ1 constant .    8.4.5 
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In figure VIII.1 I draw, as light curves, five isotherms – i.e. the paths that would be taken by an 

ideal gas in the PV plane in isothermal processes at five temperatures.  I also show, as a heavier 

line, an adiabat, PV
γ = constant ,  which I calculated for γ = 5/3.  The adiabat is steeper than the 

isotherms, and the curve shows that, as the gas expands adiabatically, the temperature drops.  If you 

know the original temperature and the old and new volumes, equation 8.4.3 will enable you to 

calculate the new temperature.  If you know the original temperature and the old and new pressures, 

equation 8.4.5 will enable you to calculate the new temperature.  While these purely 

thermodynamic arguments show that a gas becomes hotter if you compress it, this is also to be 

expected at the microscopic level.  Thus, if a molecule bounces elastically against a piston that is 

moving towards it, it will gain kinetic energy, and it will lose kinetic energy if it bounces off a 

piston that is moving away from it.  
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Figure VIII.1

 
 

 

Let us calculate the work done by a mole of an ideal gas in a reversible adiabatic expansion from 

(P1 , V1) to (P2 , V2): 

 

     ∫=
2

1

.
V

V
dVPW      8.4.6 

 

For a reversible adiabatic expansion, PV
γ
 = K, and therefore 
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   ( ).
1

)1(

2

)1(

1

2

1

−γ−−γ−γ− −
−γ

== ∫ VV
K

dVVKW
V

V
   8.4.7 

 

That is,     .
1

)(

1

212211

−γ

−
=

−γ

−
=

TTRVPVP
W         8.4.8 

(Note that T2 <  Tl in this adiabatic expansion.) 

Compare this with equation 8.3.1 for an isothermal expansion. 

Note also that, since ,/and γ=−= VPVP CCCCR  this can also be written 

).( 21 TTCW V −=       8.4.9 

This is also equal to the heat that would be lost if the gas were to cool from T1 to T2 at constant 

volume.  Think about this!  Is it coincidence, or must it be so? 

 

Here is a useful exercise.  In figure VIII.2, a gas goes from (P1 , V1) to (P2 , V2) via three different 

reversible routes: 

 

(a) An isobaric expansion followed by an isochoric decrease in pressure; 

(b) An isochoric decrease in pressure followed by an isobaric expansion; 

(c) An adiabatic expansion. 
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At each stage, calculate the work done on or by the gas, the heat gained by the gas or lost from the 

gas, and the increase or decrease of the internal energy of the gas.  This exercise will illustrate that 

U is a function of state, but Q and W are not.  (I expect the answers to be in algebra;  ignore the 

numbers on the axes – they don’t mean anything in particular.) 

 

 

8.5  The Clément-Desormes Experiment 

 

This is a simple, quick and effective experiment often seen in teaching laboratories for measuring γ 

for air, or, with some extra effort, any other gas. 

 
Sometimes this experiment is referred to as the experiment of Clément and Desormes, and sometimes as the experiment 

of Clément-Desormes.  Apparently Charles-Bernard Desormes was the uncle of Nicolas Clément, and they both 

worked on the experiment.  Nicolas Desormes later legally changed his name to Nicolas Clément-Desormes.  Thus you 

can refer either to the experiment of Clément and Desormes or to the experiment of Clément-Desormes! 

 

A bottle of air starts at P1, T1.  Pl is a little greater than atmospheric pressure P0 .  T1 is the ambient 

room temperature. The bottle is provided with some device for measuring pressure (for example, a 

manometer).  We'll see that there is no need to measure temperatures. The stopcock is quickly 

opened and immediately closed.  The pressure at that moment is just atmospheric pressure, which 

I'll call P0, and the temperature is T2, which is a little cooler than the original room temperature T1.  

The bottle of gas is now allowed slowly to warm up isochorically to its original temperature Tl, by 

which time the new pressure P2 is greater than atmospheric pressure P0 but not as large as the 

original pressure P1.  You should sketch these two stages on a PV diagram. 

 

For the adiabatic process,   .2

)1(

01

)1(

1

γ−γ−γ−γ− = TPTP    8.5.1 

 

For the isochoric process,   P T P T0 2 2 1/ / .=     8.5.2 

 

I'll leave you to do the algebra and eliminate T T2 1/  from these equations and hence show that 

 

      γ =
ln( / )

ln( / )
.

P P

P P

1 0

1 2

    8.5.3 

 

In the above analysis, we assumed that the gas was ideal and the expansion was adiabatic and 

reversible.   The gas is nearly ideal if it is a long way above its critical temperature and there are no 

enormous ranges of P and T. The expansion is adiabatic if P2 is measured immediately after the 

stopcock is opened and closed, so that there is no time for heat to enter or leave the system.  It is 

reversible only if P P P1 0 0− << . 

 

If you want to do the experiment yourself right now without getting up from your comfortable seat, 

have a look at http://www.univ-lemans.fr/enseignements/physique/02/thermo/clement.html 
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8.6 The Slopes of Isotherms and Adiabats 

 

For an ideal gas in an isothermal process, PV = constant. 

 

In a reversible adiabatic process: 

 

PV
 γ
  =  constant,  TV 

γ − 1
  =  constant,  P 

1 − γ
T 

γ  =  constant. 

 

From these it is easy to see that the ratios of the adiabatic, isothermal, isobaric and isochoric slopes 

are as follows: 

 

             .
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∂

∂









∂

∂
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∂

∂









∂

∂
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∂

∂
       

 

            8.6.1a,b,c 

For example: -   isothermal:  PV = constant.  Take logarithms and differentiate:  .0=+
V

dV

P

dP
   Hence  

.
V

P

V

P

T

−=








∂

∂
  adiabatic:    PV

γ 
 = constant.  Take logarithms and differentiate:  .0=γ+

V

dV

P

dP
   Hence  

.
V

P

V

P

S

γ−=








∂

∂
   The other two relations can be obtained in a similar manner. 

 

Do these relations hold in general for any equation of state, or are they valid only for an ideal gas?  

In this section, we shall see that they are valid in general for any equation of state, and are not 

restricted to the equation of state for an ideal gas. 

 

Let us imagine that the state of the working substance (be it gas, liquid or solid) starts in PVT space 

at point A (P, V, TA).  We are going to take it to a new point B .),,( BTVVPP δ+δ+  As I have 

drawn it in Figure VIII.3, δP is positive,  δV is negative, and .AB TT >  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pressure 

Volume 

A  ),,( ATVP  

B  ),,( BTVVPP δ+δ+  C ),,( CTVPP δ+  

FIGURE VIII.3 
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We first suppose that we make this move by a single, adiabatic process.  In that case no heat is 

added to or lost from the system, and the increase in the internal energy is −PδV. 

 

Alternatively, B can be reached in two stages: 

   An isochoric path from A to a new point C ),,( CTVPP δ+ , followed by 

   An isobaric path from C to B.  

As I have drawn it in Figure VIII.3, .ABC TTT >>  

 

In the isochoric process, no work is done by or on the system, and the increase in the internal 

energy is equal to the heat added to the system, .)( AC TTCV −    

In the isobaric process, the increase in the internal energy is equal to the work done on the system, 

−PδV,  minus the heat  lost from the system, ;)( BC TTCP −  that is, .)( BC VPTTCP δ−−−  

 

Therefore, since the total increase in internal energy is route-independent, 

 

   .)()( BCAC VPTTCTTCVP PV δ−−−−=δ−    8.6.2 

 

Cancel PδV and write γ for CP/CV, so that 

 

     .)()( BCAC TTTT −γ=−     8.6.3 

 

But .and CBAC V
V

T
TTP

P

T
TT

PV

δ








∂

∂
+=δ









∂

∂
+=  

 

[Reminder:  Here δP means AC PP − (which, in the way in which I have drawn it in figure VIII.3, 

is positive) and δV means CB VV − (which, in the way in which I have drawn it in figure VIII.3, is 

negative).] 

Therefore    .V
V

T
P

P

T

PV

δ








∂

∂
γ−=δ









∂

∂
    8.6.4 

 

Divide both sides by δV and go to the infinitesimal limit, recalling that δP and δV are related 

through an adiabatic path: 

 

                .
PSV V

T

V

P

P

T









∂

∂
γ−=









∂

∂









∂

∂
    8.6.5 

 

Therefore       .
VPS T

P

V

T

V

P









∂

∂









∂

∂
γ−=









∂

∂
    8.6.6 
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But .so,1
TVPTVP V

P

T

P

V

T

P

V

T

P

V
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∂

∂
−=









∂

∂
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∂

∂
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∂









∂

∂
 

 

Therefore           .
TS V

P

V

P









∂

∂
γ=









∂

∂
     8.6.7 

 

Thus, as for the ideal gas, the slope of the adiabat is γ times the slope of the isotherm, only this time 

we have made no assumption about the equation of state. 

 

The other two relations (equations 8.6.1 b,c) can be dealt with as follows. 

 

Equation 8.6.3 can be rearranged to read 

 

           .))(1( CBAB TTTT −−γ−=−     8.6.8 

 

But .and CBAB V
V

T
TTV

V

T
TT

PS

δ








∂

∂
+=δ









∂

∂
+=    

 

Hence         ,
1

1

PS T

V

T

V









∂

∂

−γ
−=









∂

∂
     8.6.9 

 

which is the same as equation 8.6.1 b, but without any assumption about the equation of state. 

 

Note also that 

 

          .1−=








∂

∂









∂

∂









∂

∂

VPT P

T

T

V

V

P
    8.6.10 

 

Combine this with equations 8.6.7 and 8.6.9 to obtain 

 

           .1.)1(.
1

=








∂

∂









∂

∂
−γ









∂

∂

γ VSS P

T

T

V

V

P
    8.6.11 

 

Therefore  .
11

SSSV T

P

T

V

V

P

T

P









∂

∂

γ

−γ
=









∂

∂









∂

∂

γ

−γ
=









∂

∂
   8.6.12 

 

Therefore   ,
1 VS T

P

T

P









∂

∂

−γ

γ
=









∂

∂
     8.6.13 

 

which is the same as equation 8.6.1 c, but without any assumption about the equation of state. 
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8.7   Scale Height in an Isothermal Atmosphere 

 

The material in this chapter doubtless has countless applications, most of which I am unaware of, in 

meteorology.  Two simple topics are easy to mention, namely the scale height in an isothermal 

atmosphere, dealt with in this section, and the adiabatic lapse rate dealt with in the next section. 

 

Let us imagine a column of air of cross-sectional area A in an isothermal atmosphere – that is to say 

the temperature T is uniform throughout.   Consider the equilibrium of  

the portion of the air between heights z  and  .dzz +   The weight of this 

portion is .gAdzρ   Let P be the pressure at height z and dPP +  be the 

pressure at height .dzz +  (Note that dP is negative.)  The net upward force  

on the portion dz of the air is −AdP.    Therefore .gdzdP ρ−=  

But if we regard air as an ideal gas, it obeys the equation of state for an  

ideal gas, equation 6.1.7:   ,/ µρ= RTP  where ρ and µ are  

respectively the density and the “molecular weight”  (molar mass) 

of the gas.  Therefore ,gdzd
RT

ρ−=ρ
µ

  or .dz
RT

gd µ
−=

ρ

ρ
 

Integrate to obtain ,/ Hze−ρ=ρ   8.7.1 

where 
g

RT
H

µ
=  is the scale height.  It is large if the 

 

temperature is high, the gas light and the planet’s gravity  

feeble.  It is the height at which the density is reduced to a fraction 1/e, or 36.8%. of its ground 

value. What would it be, in kilometres, for an atmosphere consisting of 80% N2 and 20% O2, at a 

temperature of 20 ºC, where the gravitational acceleration is 9.8 m s
−2

?  What fraction is this of the 

radius of Earth?   If you made a model of Earth one metre in diameter (radius = 50 cm), how thick 

would be the atmosphere?  You’d better look after it -  our atmosphere is a very thin skin clinging 

to the surface! 

 

 

8.8   Adiabatic Lapse Rate 

 

Earth’s atmosphere is not, of course, isothermal.  The temperature decreases with height. The 

temperature lapse rate in an atmosphere is the rate of decrease of temperature with height;  that is 

to say, it is ./ dzdT−     

 

An adiabatic atmosphere is one in which γρ/P  does not vary with height.  In such an atmosphere, 

if a lump of air is moved adiabatically to a higher level, its pressure and density will change so that 
γρ/P  is constant – and will be equal to the ambient pressure and density at the new height.  For 

such an atmosphere, it is possible to calculate the rate at which temperature decreases with height – 

the adiabatic lapse rate.  We shall do this calculation, and see how it compares with actual lapse 

rates. 

 

As in Section 8.7, the condition for hydrostatic equilibrium is 

A 

z 

dz 

FIGURE VIII.4 
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    .gdzdP ρ−=        8.8.1 

 

   Since we are trying to find a relation between T and z for an adiabatic atmosphere (i.e. one in 

which γρ/P  doesn’t vary with height), we need to find the adiabatic relations between P and T and 

between ρ and T. 

 

   These are easily found from the adiabatic relation between P  and ρ: 

 

    γρ= cP        8.8.2 

 

and the ideal gas equation of state: 

 

    .
µ

ρ
=

RT
P        8.8.3 

 

Eliminate P: 

 

    .

)1/(1 −γ










µ
=ρ

c

RT
      8.8.4 

 

Eliminate ρ: 

 

    ,)1/(

)1/(1)1/(

)1/(
−γγ

−γ−γγ

−γγ

µ
= T

c

R
P      8.8.5 

 

from which   .
1

)1/(1

)1/(1)1/(

)1/(

dTT
c

R
dP

−γ

−γ−γγ

−γγ

µ−γ

γ
=    8.8.6 

 

Substitute equations (8.8.4) and (8.8.6) into equation (8.8.1), to obtain, after a little algebra, the 

following equation for the adiabatic lapse rate: 

 

 

    .
1

1
R

g

dz

dT µ









γ
−=−       8.8.7 

 

This is independent of temperature. 

 

If you take the mean molar mass for air to be 28.8 kg kmole
−1

, and g to be 9.8 m s
−2

 for temperate 

latitudes, you get for the adiabatic lapse rate for dry air −9.7 K km
−1

.  The presence of water vapour 

in humid air reduces the mean value of µ (and hence the adiabatic lapse rate), and actual lapse rates 

are usually rather less than the calculated adiabatic lapse rates even for humid air. (The presence of 
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water vapour also increases slightly the value of γ.  This would result in a slightly larger lapse rate, 

but the effect is not as great as the reduction in lapse rate caused by the larger value of µ.  Try some 

numbers to convince yourself of this.) The International Civil Aviation Organization Standard 

Atmosphere takes the lapse rate in the troposphere (first 11 km) to be −6.3 K km
−1

.    What happens 

if the actual lapse rate is faster than the adiabatic lapse rate?  If you imagine a lump of air to be 

moved adiabatically to a higher level, its pressure and density will change so that γρ/P  is constant, 

and it will then find itself in a region where its new density is less that the new ambient density.  

Consequently, it will continue to rise, and the atmosphere will be convectively unstable, and a 

storm will ensue.  The atmosphere is stable as long as the actual lapse rate is less than the adiabatic 

lapse rate (which is reduced in humid air) is unstable if the actual lapse rate is greater than the 

adiabatic lapse rate.    

 

 

 

8.9   Numerical Values of Specific and Molar Heat Capacities 

 

The following table is not intended as a definitive, authoritative table of precise heat capacities.  It 

is intended just to give a rough idea of the orders of magnitude and the relative magnitudes for a 

few substances. 

 

For gases, the heat capacities tabulated are at constant pressure.  For solids and liquids the 

difference between Cp and Cv is much smaller than for gases, because of the much smaller 

coefficient of expansion.  Notice that the molar heat capacities for gases, when expressed in terms 

of R, are about what are expected from the theoretical considerations in this chapter.  Notice the 

relatively large molar heat capacities of organic liquids (the molecules can rotate and can vibrate in 

many modes), and that, the more complex the molecule, the larger its molar heat capacity.  Notice, 

however, that, because water has a low molecular weight (molar mass), water has the largest 

specific heat capacity of any common liquid or solid. (The specific heat capacities of gaseous H2 

and He are, unsurprisingly, larger still.  A kilogram of hydrogen is an enormous number of 

molecules, so it takes a lot of heat to warm them all up.)  We have not studied the theory of the heat 

capacities of solids in this chapter, but, when you do so in a course on solid state physics or on 

statistical mechanics, you will understand that the expected molar heat capacity of metals would be 

about 3R, which is approximately what is shown for the three metals in this table. 
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   Specific Heat Capacity   Molar Heat Capacity 

    at Constant Pressure    at Constant Pressure 

 

               cal g
−1

 Cº 
−1

       J kg
−1

 K
−1     

                   J kmole
−1

 K
−1

       In units of R 

 

Helium       (g)  1.25  5250    21000      2.53 R 

 

Argon         (g)  0.13    526    21000      2.53 R 

 

H2        (g)  3.44           14400    28800      3.46 R 

 

O2        (g)  0.22    919    29400      3.54 R 

 

N2        (g)  0.25  1040    29100      3.50 R 

 

CO2           (g)  0.20                   843                  37100      4.46 R 

 

H2O           (l)  1  4184    75300      9.1   R 

 

C2H5OH    (l)  0.58  2430             112000               13.5  R 

 

CCl4       (l)  0.20    852             131000    15.8  R 

 

C6H6         (l)  0.42                 1740             136000    16.4 R 

 

Al      (s)  0.22    941               25400                  3.1 R 

 

Cu             (s)  0.092                 384               24400      2.9 R 

 

Fe             (s)  0.11                   450                                        25100                  3.0 R     

 

 

8.10 Heat Capacities of Solids 

 

I do not deal a great deal with solid state physics in these notes, particularly in this chapter, which 

has been concerned mostly with gases.  But the inclusion of the heat capacities of three metals in 

the above table provides an opportunity for a brief mention of the heat capacities of metals and of 

other crystalline solids.  In a simple model of a crystalline solid, the solid can be thought of as a 

regular lattice of atoms held in position near their neighbours by springs, and the atoms have three 

degrees of vibrational freedom – in the x, y and z directions.  For each of these vibrational modes 

there are two squared terms (of the form 2

2
1
vm  and 2

2
1 ωI ) that contribute to the internal energy.   

The internal energy associated with each of these six terms is RT
2
1 per mole, which comes to 3RT 

per mole, and thus you would expect the molar heat capacity to be about 3R – and you can see from 

the above table that this is indeed the case.  Indeed at room temperature, most metals and simple 

crystalline solids have a molar heat capacity of about 3R.  (This is sometimes referred to as 
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“Dulong and Petit’s Rule”.)  At low temperatures, however, the molar heat falls below this value, 

and eventually approaches zero at 0 K.  At very low temperatures, the molar heat capacity varies 

roughly as the cube of the temperature.  As room temperatures are reached, the molar heat capacity 

asymptotically approaches the “classical” value of 3R.    

 

.   The run of molar heat capacity with temperature at low temperatures looks a little like figure 

VIII.5 for magnesium and figure VIII.6 for silver bromide.   It will be seen that these two curves 

are the same shape except for a different scale along the temperature axis – and the same is true for 

most metals and simple crystalline solids.  Indeed we can assign to each solid a characteristic 

temperature, known as the Debye temperature, θD, and then, if we express temperature not in 

kelvin but in units of the Debye temperature for the particular solid, then the curves are indeed the 

same shape.  In other words, the molar heat capacity of all solids (or at least all solids that behave 

like this!) is the same function of D/ θT .  I show this function as figure VIII.7. 

 

   The theory of the heat capacities of solids was investigated by Einstein and by Debye.  (Peter 

Debye – Dutch-American physicist/chemist.  Nobel Chemistry prize 1936.)  The Debye 

temperature is related to the vibrational frequency of the atoms in their crystalline lattice.  Diamond 

is a very hard substance, with very strong interatomic bonds.  Consequently the vibrational 

frequencies are very high, and the Debye temperature for diamond is correspondingly high: 

.K1860D =θ   As a result of this the heat capacity rises very slowly with increasing temperature, 

and at room temperature is well below the “classical” value of 3R.  Most other solids have weaker 

bonds and far lower Debye temperatures, and consequently their molar heat capacities have almost 

reached the classical Dulong-Petit value of 3R at room temperature.  Here are a few Debye 

temperatures: 

 

 Potassium:                 100  K 

 Silver bromide           145  

Silver   215 

Magnesium    290 

Copper   315 

Iron   420 

 

If it seems that the harder the solid the higher the Debye temperature and the slower the solid is to 

reach its classical CV of 3R, this is not coincidence. 

 

   I do not derive Debye’s theoretical formula here – it is something to look forward to in courses on 

solid state physics or statistical mechanics, but, for interest, the formula (which I used for 

calculating figures VIII.5-7) is 

.
)1(

9
/1

0 2

4
3

dx
e

ex
TC

T

x

x

V ∫ −
=              8.9.1 

In this equation CV is in units of R, and T is in units of the Debye temperature. 
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In case you are wondering what the symbol “x” stands for in equation 8.9.1, it is merely a dummy variable, for the 

integral in that expression is a function not of x but of T, the upper limit of the integral.  

 

 If you try to reproduce figure VIII.7 yourself by evaluating equation 8.9.1 for a number of different temperatures, you 

will soon find that it is a good deal more laborious than may at first be evident.  

 

 In my first attempt at doing it, for each of the 400 values of T that I used for plotting Figure VIII.7, I used a 1000 point 

Simpson’s Rule integration.  Thus I evaluated the integrand 400,000 times, and it took the computer almost half a 

second.   Later, I found that Gaussian quadrature was much, much more efficient, requiring the calculation of the 

integrand at only a very few points.   

 

However, J. Viswanathan of Chennai, India, has since shown me an even better method than the Gaussian quadrature. 

 

He uses the theorem ).('))(()(
)(

0
xgxgfdyyf

dx

d xg
=∫   This was a new one on me, but it is very easy to derive 

and looks almost obvious in hindsight.  Applied to our problem, that is, applied to our equation  

 

,
)1(

9
/1

0 2

4
3

dx
e

ex
TC

T

x

x

V ∫
−

=      8.9.1 

  

 

it becomes, after a modest amount of work: 
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),/1(9
3

TTf
T

C

dT

dC VV −=      8.9.2 

 

where    .
)1(

)(
2

4

−
=

x

x

e

ex
xf       8.9.3 

 
He evaluates CV at T = 2, using a direct numerical integration of equation 8.9.1 - but this is the only time that he does 

this!  The answer is 2.9628.  Then he moves down by dT at each step and calculates the corresponding dCV by using a 

fourth order Runge-Kutta integration on the differential equation 8.9.3.   The three methods agree very well, but the 

Simpson’s Rule method was by far the most laborious.   

 

 

   Debye’s theory was published in 1912, and they certainly didn’t have electronic computers, or even electronic hand 

calculators, in those days.   In the 1950s most scientists were using hand-operated mechanical calculators, with 

electrically-driven mechanical calculators beginning to come into use towards the end of that decade.  I suspect that in 

1912 not even hand-operated mechanical calculators were available, and calculations would have been done using 

pencil and paper and logarithm and other tables.  One must think of the physical insight and mathematical competence 

needed to develop the theory of the heat capacity in the first place, and then the enormous effort needed to calculate the 

resulting equations. 


