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CHAPTER 6
MOTION IN A RESISTING MEDIUM

6.1 Introduction

In studying the motion of a body in a resistingdium, we assume that the resistive force on a
body, and hence its deceleration, is some funatifoits speed. Such resistive forces are not
generally conservative, and kinetic energy is Ugudiksipated as heat. For simple theoretical
studies one can assume a simple force law, sudheasesistive force is proportional to the
speed, or to the square of the speed, or to som&idn that we can conveniently handle
mathematically. For slow, laminar, nonturbulenttimo through a viscous fluid, the resistance is
indeed simply proportional to the speed, as cashHmvn at least by dimensional arguments.
One thinks, for example, of Stokes's Law for theaiomof a sphere through a viscous fluid. For
faster motion, when laminar flow breaks up andfiv becomes turbulent, a resistive force that
is proportional to the square of the speed mayessnt the actual physical situation better.

6.2 Uniformly Accelerated Motion.

Before studying motion in a resisting mediunbyigf review of uniformly accelerating motion
might be in order. That is, motion in which thsistance is zero. Any formulas that we develop
for motion in a resisting medium must go to therfatas for uniformly accelerated motion as the
resistance approaches zero.

One may imagine a situation in which a bodytstaith speed (, and then accelerates at a rate
a. One may ask three questions:

How fast is it moving after timg?
How far has it moved in time?
How fast is it moving after it has covered a aligtex ?

The answers to these questions are well knovamycstudent of physics:

= ,+at, 6.2.1
x=  t+iaf, 6.2.2
2= 2 42ax 6.2.3

Since the acceleration is uniform, there is no needse calculus to derive these. The first
follows immediately from the meaning of acceleratio Distance travelled is the area under a
speed : time graph. Figure VI.1 shows a speedhe tyraph for constant acceleration, and
equation 6.2.2 is obvious from a glance at the lgrafequation 6.2.3 can be obtained by
elimination oft between equations 6.2.1 and 6.2.2. (It can hisaleduced from energy
considerations, though that is rather putting @ lsefore the horse.)
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Nevertheless, although calculus is not necessaiy,imstructive to see how calculus can be
used to analyse uniformly accelerated motion, sicedeulus will be necessary in less simple
situations. We shall be using calculus to ansWwerthree questions posed earlier in the section.

For uniformly accelerated motion, tbguation of motiots

X = a. 6.2.4

To answer the first question, we writeasd /dt and then the integral (with initial condition
x=0 whent=0) is

= ,tat 6.2.5
This is thefirst time integral.
Next, we write asdx/dtand integrate again with respect to time, to get
x= t+iat. 6.2.6
This is thesecond time integral.

To obtain the answer to the third question, which wl be called thespace integralwe must
remember to write x as d /dx. Thus the equation of motion (equation 6.2.4) is

—=a. 6.2.7
dx



When this is integrated with respectxtdwith initial condition o whenx = 0) we obtain
2= Z+2ax 6.2.8

This is thespace integral.

Examples.

Here are a few quick examples of problems in unifgraccelerated motion. It is probably a
good idea tavork in algebraand obtainalgebraic solutions to each problem. That is, even if
you are told that the initial speed is 15 th sall it ¢, or, if you are told that the height is 900
feet, call ith. You will probably find it helpful to sketch grap either of distance versus time or
speed versus time in most of the problems. Oriditds hint: Remember that the two solutions
of a quadratic equation are equabif= 4ac.

1. A body is dropped from rest. The last third of thetance before it hits the ground is
covered in timd. Show that the time taken for the entire falthe ground is 5.4b

2. The Lady is 8 metres from the bus stop, when thg, Btarting from rest at the bus stop,
starts to move off with an acceleration of 0.4 fn &Vhat is the least speed at which the
Lady must run in order to catch the Bus?

3. A parachutist is descending at a constpeeéd of 10 feet per second. When she is at a
height of 900 feet, her friend, directly below hdarows an apple up to her. What is the
least speed at which he must throw the apple iarduat it to reach her? How long does it
take to reach her, what height is she at thenwdrat is the relative speed of parachutist
and apple? Assunte= 32 ft . Neglect air resistance for the apple (but notlie
parachutist!)

4. A lunar explorer performs the following exipeent on the Moon in order to determine the
gravitational acceleratiogithere. He tosses a lunar rock upwards at amlsiieed of 15
m s*. Eight seconds later he tosses another rock wsnaran initial speed of 10 rit.s
He observes that the rocks collide 16.32 secortds thie launch of the first rock.
Calculateg and also the height of the collision.

5. Mr A and Mr B are discussing the merits aititars. Mr A can go from 0 to 50 mph in
ten seconds, and Mr B can go from 0 to 60 mph is€tf®nds. Mr B gives Mr A a start
of one second. Assuming that each driver firsebrates uniformly to his maximum
speed and thereafter each travels at uniform spesd]ong does it take Mr B to catch
Mr A, and how far have the cars travelled by then?



Answers

| make the answers as followket me know jtatum at uvic dot ca ) if you think | have
got any of them wrong.

2. 253m3%. 3. 230fts, 75s, 825 ft, Offs 4. 1.64m%< 26.4m
5. 41 s, half a mile.

6.3 Motion in which the Resistance is Proportionallie Speed.

If the only force on a body is a resistive fotlsat is proportional to its speed, the equation of
motion is

mx = - bx. 6.3.1

One thinks, for example, of Stokes's equationtierlaminar motion of a sphere through a
viscous fluid, in which the resistive force igtta , whereh is the coefficient of dynamic
viscosity. If we divide both sides of the equatmnthe mass, we obtain

X = - cX, 6.3.2

<

whereg = b/mis thedamping constantlt has dimension Tand S unitss.

6.3a. Resistive force only

It is difficult to imagine a real situation in wliiicthe one and only force is a resistive force
proportional to the speed. A body falling throudle air won't do, because, in addition to the
resistive force, there is the acceleration duer&vity. Perhaps we could imagine a puck sliding
across the ice. The ice would have to be presuimd completely frictionless, and the only
force on the puck would be the resistance of the Hiis a slightly artificial situation, because
we want the puck to be going so fast that theimetl force is negligible compared with the air
resistance, but not so fast that the airflow ibalent - but we need to start somewhere. The
frictional force is, at least to a very good appnaation, not a function of speed, but is constant,
and we shall start by assuming that it is negleydnhd that the only horizontal force on the puck
is air resistance and that the air resistanceoggstional to the speed.

In this case, the equation of motion is indeed 8gn&.3.2. To obtain thigrst time integra) we
write x as and the first time integral is readily found to be

= e 6.3.3

Here ois the initial speed. This is illustrated in frgw1.2



FIGURE VI.2
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The speed is reduced to half of the initial speea fime

t, =2 _ 009 6.3.4
g g
The second time integralis found by writing in equation 6.3.3 adx/dt. Integration, with
initial conditionx = 0 whent = 0, gives
X = X (1- e‘gt), 6.3.5
wherex, =

o/ c. This is illustrated in figure VI.3. It is seenat the puck travels an eventual
distance ofx, , but only after an infinite time.
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FIGURE VI.3
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We can obtain thepace integrakither by eliminating from between the two time integrals, or
by writing the equation of motion as

d
— =-q . 6.3.6
dx g
With initial condition o whenx = 0, this becomes
= - o, 6.3.7

which is illustrated in figure VI.4.  The speed dsolnearly with distance (but exponentially
with time) reaching zero after having travelledraté distancex, = ,/g in an infinite time.



FIGURE V1.4

This analysis has assumed that the only force hasésistive force proportional to the speed.
In the case of our imaginary ice puck, we were ia#sg that the resistive force was that of the
air, the friction being negligible. Of course, & puck slows down and the resistive force
becomes less, there will come a point when théidnel force is no longer negligible compared
with the ever-decreasing air resistance, so tleabiove equations no longer accurately describe
the motion. We shall come back to this pointubsection 3c.

6.3b. Body falling under gravity in a resisting mediuresistive force proportional to the
speed.

We are here probably considering a small sphetadaslowly through a viscous liquid, with
laminar flow around the sphere, rather than a skgrdaurtling through the air. In the latter case,
the airflow is likely to be highly turbulent andetliesistance proportional to a higher power of
the speed than the first.

We'll use the symbal for the distance fallen. That is to say, we meagwownwards from the
starting point. The equation of motion is

y=9g-g¢ 6.3.8
whereg is the gravitational acceleration.

The body reaches a constant speed wiebecomes zero. This occurs at a spéetdg/g,
which is called théerminal speed



To obtain thdirst time integra) we write the equation of motion as

d = A_
oo o™ ) 6.3.9
or Ad = gdt. 6.3.10

CAUTION . At this point it might be tempting to write

d

~ = - gdt. 6.3.11

DON'T! In the middle of an exam, while coveringsthierivation that you know so well, you
can suddenly find yourself in inextricable diffides. The thing to note is this. If you look at
the left hand side of the equation, you will aqtate that a logarithm will appear when you
integrate it. Keep the denominator positive! m@amathematicians may know the meaning of
the logarithm of a negative number, but most ofoudinary mortals do not - so keep the
denominator positive!

With initial condition =0 whent = 0, thefirst time integralbecomes

= "[1- %) 6.3.12
This is illustrated in figure VI.5.

FIGURE V1.5

terminal speed

speed

time

Students will have seen equations similar to thefore in other branches of physics - e.g.
growth of charge in a capacitor or growth of cutri@man inductor. That is why learning physics
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becomes easier all the time, because you have isedinbefore in quite different contexts.
Perhaps you have already noticed that third-yegsips is easier than second-year physics; just
think how much easier fourth-year is going to be!afy rate, approaches the terminal speed
asymptotically, never quite reaching it, but reaghhalf of the terminal speed in timgln2)/g =
0.6934 (you have seen that before while studying radioactive decagyi reaching (1 e ) =
63% of the terminal speed in timedl/

If the body is thrown downwards, so that its ilispeed is not zero butis o whent =0, you

will write the equation of motion either as equat®.3.10 or as equation 6.3.11, depending on
whether the initial speed is slower than or fathan the terminal speed, thus ensuring that the
denominator is kept firmly positive. In either eathe result is

="+(,o- )¢ 6.3.13

Figure V1.6 shows as a function of for initial conditions ,=0,1", °, 2".

FIGURE V1.8
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Returning to the initial condition = 0 whent = 0, we readily find theecond time integrab be

A

y="t- 5(1- e‘g‘). 6.3.14

You should check whether this equation is whakeeted for whemn = 0 and wher
approaches infinity. The second time integrahisven in figure VI.7.

FIGURE VI.7
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Thespace integrals found either by eliminatinjbetween the first and second time integrals, or
by writing y as d /dyin the equation of motion:

O|—:g(A- ). 6.3.15

whence y=-—-Inl-—- - — 6.3.16
g
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This is illustrated in figure VI.8. Notice thatalequation giveg as a function of, but only
numerical calculation will give for a giveny.

FIGURE V1.8
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Problem Assumeg=9.8 m & . A particle, starting from rest, is dropped thgh a medium
such that the terminal speed is 9.8 tdow long will it take to fall through 9.8 m?

We are asked fof, giveny, and we know the equation relatihgndy - it is thesecond time
integral, equation 6.3.14 - so what could be easier? YWehg= g/ = 1s* so equation
6.3.14 becomes

98 = 98t - 98- ¢ 6.3.17
and suddenly we find that it is not as easy as @rpé

The equation can be written

f(t)=t+e'-2= 0 6.3.18
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For Newton-Raphson iteration we need

fr)y=1-e". 6.3.19

and, after some rearrangement, the Newton-Rapheiion (t ® t - f/f') becomes

+2. 6.3.20

(It may be noticed that 6.3.20, which derives fribia Newton-Raphson process, is meraly
rearrangement of equation 6.3.18.)

Starting with an exceedingly stupid first guess ©f100 s, the iterations proceed as follows:

t =100.000 000 000
2.000 000 000
1.843 482 357
1.841 406 066
1.841 405 661
1.841 405660 s

Problem Assumeg=9.8 m &. A particle, starting from rest, falls throughesisting medium,
the damping constant beimg= 1.96 & (i.e. ~ =5 m § ). How fast is it moving after it has
fallen 0.3 m?

We are asked for, giveny. We want thespace integrglequation 6.3.16. On substituting the
data, we obtain

f( ) =5In(l- 02 )+ + 0588=0. 6.3.21
From this, f'( )= 1( -5 6.3.22
The Newton-Raphson proce@s@ t - f/f'), after some algebra, arrives at

_u(sin(02u)+0588) | u(5Inu- 7.459189560 c

5= 6.3.23

whereu = 5-

This time Newton-Raphson does not allow us theryxif an exceedingly stupid first guess, but
we know that the answer must lie between 0 and $'m so our moderately intelligent first
guesscanbe =25m#§& .
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Newton-Raphson iterations:

= 2.500 000 000
2.122 264 100
2.051 880 531
2.049 766 247
2.049 764 400 m's

Problems

Here are four problems concerning a body fallingnfrrest such that the resistance is
proportional to the speed. Assume that9.8 m 8° . Answers to questions 1 - 3 are to be given
to a precision of 0.0001 seconds.

1. A particle falls from rest in a medium such tha tamping constant ¢ = 1.0 §*. How
long will it take to fall through 10 m?

2. It takest seconds to fall througi metres. Construct a table showinfpr 201 values of/
going from O to 20 metres in steps of 0.1 metrsyasng thag = 1.0 &%,

3. Construct a table showingor 201 values of/ going from 0 to 20 metres in steps of 0.1
metres for g=0.0, 0.5, 1.0, 1,5, 2.0 s . The table ikdwe six columns. The first column
gives the distance fallen to a precision of 0.1reset The remaining five columns will give the
time, to a precision of 0.0001 seconds, that traytiakes to fall a given distance, to a precision
of 0.0001 seconds

4. Draw, by computer, a graph showin¢the dependent variable, plotted vertically) vergu
(plotted horizontally) for the five values @fin question 3.

These four problems are in order of increasingialiffy. The first is merely an exercise in
solving an implicit equation (equation 6.3.14) nuicely, and might serve as an introductory
example of how, for example, to solve an equatiprNlewton-Raphson iteration (I make the
answer 1.8656 s.) The last two, if started fromattr, could well take up an entire afternoon
before it is solved to one's complete satisfactioih.might be observed that the graphs of
guestion 4 could be drawn fairly easily by calcnigty explicitly as a function ot, thus
obviating the necessity of Newton-Raphson iteratiblo such short cuts, however, can be made
for constructing the table of question 3.

In fact | solved questions 3 and 4 in just a fewués- but | did not start from scratch. As you
progress through your scientific career, you wdtbme aware that there are certain operations
that you encounter time and time again. To do tijues 3 and 4, for example, you need to be
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able to solve an equation by Newton-Raphson i@matou need to be able to construct a table
of a functiony =f (x ; a), or in this casdé = f (y ; ¢g); and you need to be able to instruct a
computer to draw graphs of tabulated values. e long ago that all of these are problems
that crop up frequently, and | therefore long agoter short programs (only a few lines of
Fortran each) for doing each of them. All | haddim on this occasion was to marry these
existing programs together, tailored to the paléicéunctions needed. Likewise a student will
recognize similar problems for which he or she detfly needs a solution. You should
accumulate and keep a set of these small programssé in the future whenever you may need
them. For example, this is by no means the il you will need Newton-Raphson iteration to
solve an equation. Write a Newton-Raphson program and keep it for future occasions!

6.3c Body thrown vertically upwards, initial speed

If we measureg upwards from the ground, the equation of motion is

y=-9g-g =-9(+). 6.3.24

Thefirst time integralis
=-"+(,+ ) 6.3.25

and this is shown in figure VI1.9.

FIGURE V1.9
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It reaches a maximum height after timewhen = 0 (at which time the acceleration is jug):
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T=>In1+2. 6.3.26

The second time integra{obtained by writing asdy/dt in equation 6.3.25) and thepace
integral (obtained by writingy as d /dyin the equation of motion) require some patietcg,

the results are

y =1 °+A)(1- e%)- 1, 6.3.27

= ,-gy- "In A+°. 6.3.28

These are illustrated in figures VI.10 and VI.11.

FIGURE VI1.10
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FIGURE VI.11
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It might be remarked that you cannot, on this oorgasobtain the space integral by algebraic

elimination of t between the two time integrals. You should verihat, for smallt,
» .- gtandy» ,t; and forsmally, *» ;- 2gy.

The maximum heightl is reached when = 0 in equation 6.3.28:

H =

Qlk

- “In1+-2 6.3.29

For a puck sliding along ice and subject to airstasce and a frictional force, the equation of
motion is

X =-ng- CX.

<

6.3.30

This is very similar to equation 6.3.24, with theostitution ofng for g, and all the subsequent
equations and conclusions follow, including the maxm distance travelled and the time taken
to get there except that the equations seem to predict thagénwhe speed becomes zero, the
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acceleration ismg, and the puck will subsequently start to move lagks (just as the ball
thrown vertically upwards will start to fall). €hreader is invited to cogitate upon this and
determine just where there is a difference betwtbermotion of the one and the motion of the
other.

More problems on motion in which the resistangaragortional to the speed

5. A particle is projected upwards. The aversygeed between launch and the highest point is
one third of the speed of projection. Calculate thtio of the terminal speed to the speed of
projection.

6. A particle is projected upwards. Show thatdlkierage speed between launch and the highest
point cannot be more than half the speed of prigject

7. A particle is projected upwards in a mediundafmping constant 1.2's It takes twice as
long to come down as to go up. What was the Iripaed? d = 9.8 m &.)

8. A particle falls from rest. The damping constag and the gravitational acceleratiorgis
Expandy as a power series trup tot®.
Expandy as a power series inup to °.

9. Two identical particles are moving in a medium ihieh their terminal speed is. One is
launched vertically upwards from the ground withiah speed” . At the same instant, the
other is launched vertically downwards, also wittial speed” , from a point at a vertical
heighth above the point of projection of the first pagiclShow that, provided th&f >>gh
the two particles meet after a time

-—Inl-gfrl.
g

10. A particle is launched vertically upwards with @edU times the terminal speed. Show
that on return it hits the ground with a sp&&tiimes the terminal speed, where

U+V:In£.

Draw a graph o¥ (vertical axis) versud (horizontal axis) fotJ going from O to 2.

Answers. 5. © ,=01320. 7. 29.96ms 8 y=1gt’-1lggt; y=— g
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11. A particle is launched vertically upwardsaatinitial speed o = 60 m §*. The air

resistance is proportional to the speed. Theubgiis such thag=9.8 m &% It takes twice as
long to fall from its maximum height as it takegéach its maximum height. How long does the
total journey take, what is the maximum height, egt is its speed when it returns to the
ground?

| found this problem a little harder than | egf@el. Here is my solution.

Notation: H = maximum height
T. =time to reach it
T, = 2T = time to fall back to the ground.
g = acceleration due to gravity
g = damping constant
= initial speed

According to equation 6.3.29

H=1 -95n1+90 1)
g g g

According to equation 6.3.26

T =tn1+90 @)
g g

The statement of the problem tells us that

T, = 2m1+90 3)
g g

According to equation 6.3.14

2

H :g_TZ - g(]_- e'gTZ). (4)
g g

Substitute equation (3) into equation (4), and egjtlee resulting expression fdrto the
expression given by equation (1). This is fadditha little by writingx = 1+ fo

After a little algebra, | obtain
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3Inx-x+x—12=0. (5)

This has an obvious solutior= 1, which implies thato = 0, which is a little disconcerting,
though it certainly satisfies the problem in theg teturn time is twice the outgoing time. (Both
are zero!) However, there is another solution, elgm= 4.6682236, which immediately tells us

that the damping constantgs: 0.59914319°S. Then equation (2), which i :Lgx, gives us

thatT, = 2.5716367 s, so the total journey time is 7.2D49s. The maximum height reached is
given by equation (1) or (4). Do both as a cheatkhe algebra and arithmetic. From either of
these | geH = 58.079538 m. Finally, we can get the spdddrmling, », from equation
6.3.12:

= %(1 &) (6)

or from equation 6.3.16:

(7)

2

H:-gm 1-& -
g g

_2,
g
It is easy to calculate, from equation (6). It is a bit bothersome to tisam equation (7), but

our check will be satisfied if we calculate from equation (6) and then substitute it into
equation (7) to verify that we get the correct edlorH. | make it that , = 15.606119 m's.
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6.4 Motion in which the Resistance is Proportionallte Square of the Speed.

There are not really any new principles; it id jasnatter of practice with slightly more difficult
integrals. We assume that the resistive forcaup@gmass iskx® .Here, althouglk plays a
somewhat similar role to thgeof section 3, it is not exactly the same thing,eend indeed it is
not dimensionally the same gsWhat are the dimensions, and the Sl unit¥k?of

6.4a. Resistive force only

We'll imagine a puck sliding along a frictionlessface against turbulent air resistance. The
equation of motion is:

x=-k 2. 6.4.1

By this time we assume that the student knows lwogbtain the first and second time integrals
and the space integral. The actual integrationstmeaslightly more difficult, but we leave it to
the reader to obtain the results

= —0 6.4.2
1+k ot
X = M, 6.4.3
k
= & 6.4.4

These are illustrated in figures VI.12,13,14. Nitftat, provided that equation 6.4.1 accurately
describes the entire motion (which may not be @medn a practical situation), there is no finite
limit to x, nor does the speed drop to zero in any finitetim
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FIGURE VI.12
kel
o
&
time
FIGURE VI.13
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FIGURE VI.14
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6.4b.Body falling under gravity in a resisting mediumsistive force proportional to the
square of the speed

The equation of motion is

y=9g-k 2. 6.4.4

The limiting, or terminal, speed, which is reackdten the acceleration is zero, is given by

"ok,

so that the equation of motion can be written

y=k - )

The first and second time integrals and the spategiial can be found in the usual way, though
with perhaps a little more effort:

6.4.5

6.4.6

= "tanhk 't), 6.4.7
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y = In|cosHk"™ )]

6.4.8
k

2= 2. @) 6.4.9

These are illustrated in figures VI.15, 16,17.eThverse relations corresponding to equations
6.4.7 and 6.4.8 can be found from the usual forsfdathe inverse hyperbolic functions

tanh*x= InJF andcosh' x = In(x+\/x2 - 1)
- X

FIGURE VI.15
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FIGURE VI.16
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6.4c Body thrown vertically upwards, initial speed, , resistance proportional to the

square of the speed.

The equation of motion is
y=-(g+k ?)=-K(7+ )

where~ ./g/k. Thatis to say

Thefirst time integralis

1 .
“tan''— = constant- kt.

6.4.10

6.4.11

6.4.12

Since the constant of integration has dimensiontkefeciprocal of a speed, | shall use the

1 .
symbolv for the constant, so that the first time intedpr@atomes

A

="tan — -kt .
V

6.4.13
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The constanV¥ can be evaluated from the initial condition that ,att = 0, so that

A

v =tan1-2. 6.4.14

The timeT to maximum height is found by putting= 0, t = T in equation 6.4.13 to obtain

-1 6.4.15
Vk
Thesecond time integras found by writing% for in equation 6.4.13 and integrating, to
obtain:
1 cosv - k't

The maximum height reached is found by substitufifigr t andH for y in equation 6.4.16 to
obtain

N

H = 1Insec—. 6.4.17
k V

The space integral is found by Writing(;— for y in equation 6.4.10 and integrating, to obtain
y

2= (24 22y, o2, 6.4.18
The maximum heighitl is reached when the speed is zero, whence

1 2
H = Eln 1+-2 . 6.4.19

~2

It is easy to show (by making use of equation @.Atdgether with a little help from Pythagoras)
that equations 6.4.17 and 6.4.19 are equivalent.

Let us write these equations in a form such that
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acceleration is expressed in unitgypf
speed is expressed in units gfg/k ,
distance is expressed in units bfk , and
time is expressed in units df/,/gk

In that case, the equations become as follows.
The equation of motion, 6.4.10, becomes
y =1+ 2. 6.4.19

The first time integral6.4.13, which gives speed as a function of tiooepbined with 6.4.15,
which gives the integration constant, becomes

= 1+—0tant' 6.4.20a
The converse of this equation is

t = tan't , - tan? 6.4.20b
The timeT to maximum heightwhich occurs when =0, becomes

T =tan'' ,. 6.4.21

The second time integra.4.16, which gives distance as a function oktisombined with
6.4.15, which gives the integration constant, bezom

y =In(cost+ sint). 6.4.22a

The converse of this equation is

- e’ i
t:sml—2 - cott . 22b
1+ g

The maximum heighitl is calculated by substitutirtd for y, andT for t in equation 6.4 22.

H =Inyl+ 2. 6.4.23

The space integrab.4.18, which gives speed as a function of de#gahecomes
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Z=(f+ne¥ -1, 6.4.22

The maximum heightl occurs where = 0, which results again in equation 6.4.23, in \wlic
was calculated through a different route.

H=InJ1+ 2. 6.4.23

Numerical exampleLet us suppose that we project a body vertiagtyards, the resistance
being proportional to the square of the speed, aitimitial speed of , = 2in units of\/g/k .

It will reach a maximum height (in units ofllof H = Iny/5= 0.80472in time
T=tan'2 = 1.10715(in units of 1/\/@). Thereatfter it falls, taking time

cosh'H = In(\/g + 2) =1.44364to reach the ground. The total time of flighRi§5079.

Figure VI1.18 shows the speed (magnitude of the wgloas a function of time (first time
integral) as the body at first rises and then fallbe terminal speed (not reached at ground level
- or indeed in any finite time) is, of course, The speed when it hits the ground is

0.8 =89443 The value oV, which was a constant of integration and, as farcas see, has
no particular physical significance,idtan'*2 = 0.90322 and it occurs at time

tan* 2-V

= 0.37256, when the height ifn

ey gz - 050645




Speed

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

28

FIGURE VI.18

Time
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Figure VI.19 shows the height as a function of t{igecond time integral).

FIGURE VI.19
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Figure VI1.20 shows the speed as a function of hegjdce integral).
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FIGURE VI.20
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Problem

A particle is projected vertically upward with iaitspeed equal to tamtimes the terminal
speed, the resistance being proportional to tharsqef the speed. Show that on return the
particle hits the ground with speed sirtimes the terminal speed. For example, in ourerical
example, the initial speed was twice the terminaédpeorresponding to
a =tan''2 = 1.10715 If the result asked for in this problem is catréhe speed on reaching
the ground should beina = 0. 894438s indeed it is seen to be in figure VI.20.



