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CHAPTER 20 

MISCELLANEA 
 

 
20.1 Introduction 
 
This chapter is a miscellany of diverse and unrelated topics – namely surface tension, shear 
modulus and viscosity – discussed only for the purpose of presenting a few more examples of 
elementary problems in mechanics.  It is not intended in any way to substitute for a comprehensive 
course in any of the vast and interesting fields of surface chemistry, elasticity or hydrodynamics.  
All of these subjects have a huge and specialized literature, each worthy of a full-length course, and 
I am not remotely competent to offer one.  Nevertheless, the few simple problems chosen in this 
chapter are suitable for a bit more practice in classical mechanics. 
 
 
20.2   Surface Tension 
 
The cause of surface tension is often explained roughly as follows.  Molecules within a liquid are 
subject to intermolecular forces whose exact nature and origin need not concern us other than to say 
that they are principally van der Waals forces and they hold the liquid together and prevent it from 
evaporating.   A molecule deep within the liquid is surrounded in all directions by other molecules, 
and so the net force on it averages zero.  But a molecule on the surface experiences forces from 
beneath the surface, and consequently it tends to get dragged beneath the surface.  This results in as 
few molecules as possible remaining on the surface; i.e. it results in the surface contracting to as 
small an area as possible consistent with whatever other geometrical constraints may exist.  That is, 
the surface appears to be in a state of tension causing it to contract to the least possible area. 
 
This tension can be described qualitatively thus.    In figure XX.1, the dashed line is an imaginary  
 
    
 
 
 
 
 
 
 
 
 
 
 
 
line drawn in the surface of a liquid.  The liquid to the left of the line is being pulled to the right as 
indicated by the red arrows; the liquid to the right of the line is being pulled equally to the left as 
indicated by the green arrows.  The force per unit length perpendicular to a line drawn in the 

FIGURE XX.1 
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surface of the liquid is the surface tension.  Its SI unit is newtons per metre, and its CGS unit is 
dynes per centimetre.  The dimensions are MT−2. 
 
I have seen various symbols, such as T ,  S and γ used for surface tension.  The first two of these 
symbols are already heavily worked in thermodynamics, so I shall use the symbol γ (although, it 
must be admitted, γ is heavily worked in thermodynamics, too.) 
 
Not everyone is comfortable with a definition involving forces perpendicular to an imaginary line 
drawn in the surface, and an alternative approach may be more palatable to some.  The idea of a 
molecule beneath the surface being surrounded on all sides by other molecules and hence 
experiencing zero net average force, while a molecule on the surface is pulled asymmetrically by 
the molecules beneath it, remains.  But instead of drawing an imaginary line on the surface, we 
reason that it requires work to move a molecule from within the liquid to the surface, and it requires 
a lot of work to move many molecules from beneath to the surface.  That is, it requires work to 
create new surface.  Thus we can define surface tension as the work required to create unit area of 
new surface. The conditions under which this work is done have to be carefully defined in any 
precise definition, and, from a thermodynamical point of view, the strict definition is the increase in 
the Gibbs free energy per unit area of new surface created under conditions of constant temperature 
and pressure.   That is: 
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This is consistent with the definition of the Gibbs free energy as a quantity whose increase is equal 
to the work , other than PdV work, done on a system in a reversible, isothermal isobaric process. 
  
Such a nicety will be of interest to those versed in thermodynamics (and I have added a bit about 
the thermodynamics of surface energy in Chapter 12 of Thermodynamics), but for those not so 
versed, you may, without any serious prejudice to understanding most of the matter in this section, 
think of surface tension either as the force per unit length perpendicular to an imaginary line in the 
surface, or as the work required to create unit area of new surface.  You may express surface 
tension either in newtons per metre or in joules per square metre (or, if you are of CGS persuasion, 
dynes per centimetre or ergs per square centimetre).  These are dimensionally equivalent. 
 
 
   20.2.1   Excess Pressure Inside Drops and Bubbles 
 
The pressure inside a spherical drop is greater than the pressure outside.  The way in which the 
excess pressure P depends on the radius a of the drop, and the surface tension γ and density ρ of the 
liquid is amenable to dimensional analysis.  One can suppose that ,δβα ργ∝ aP  after which I leave 
it to the reader to show that α =  −1,  β = 1,  δ = 0, and therefore ./ aP γ∝  
 
However, it is also quite easy to calculate the excess pressure (other than as a mere proportionality) 
in terms of the surface tension and the radius of the drop.  In figure XX.2 I have divided a spherical 
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drop of radius a into two hemispheres, and we are going to consider the equilibrium of the upper 
hemisphere. 
 
The upper hemisphere is being pulled down by surface tension all round the base of the 
hemisphere, and this downward force is equal to the circumference of the base times the surface 
tension, or 2πγa. 
 
If the excess pressure inside the drop is P, the upward component of the force due to this pressure is 
equal to P times the area of the base, πa2.  In case this is not obvious, consider an elemental area dA  
   
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
as shown, at a spherical angle θ from the top of the drop.  The force on this element is equal to 
PdA.  The upward component of this force is P cos θ dA, and this is equal to P times the horizontal 
projection of dA.  Now you are welcome to do a nice double integration over the hemisphere, but 
since this (i.e " this is equal to P times the horizontal projection of dA ") is true for every elemental 
area over the surface of the hemisphere, the total upward force must be equal to P times the area of 
the base.  Thus 2πγa  =  πa2P, and so the excess pressure inside the drop is 
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The smaller the drop, the greater the excess pressure.  You may regard this as an explanation as to 
why droplets cannot form from a vapour unless there is a dust nucleus of finite size for them to 
condense upon.  Of course, two molecules colliding with each other cannot in any case coalesce 
unless there is something to remove or absorb the kinetic energy. 
 
The case of a nonspherical drop might be mentioned in passing.  It is a well known result in 
geometry (or at least it is well known to those who already know it) that if z  =  z(x , y) is a 
nonspherical surface, and you take two vertical planes at right angles to each other, and if a1 and a2 

are the radii of curvature of the intersections of the two planes with the surface, then 1 1

1 2a a
+ is 

independent of the orientations of the two planes, as long as they remain perpendicular to each 
other.   In other words, a1 and a2 do not have to be the maximum and minimum radii of curvature. 
The excess pressure inside a nonspherical drop is 
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What about the pressure inside a spherical bubble of air (or other gas) under water (or other liquid)?  
If we are hasty, we might suggest that, since this is the opposite situation to a liquid drop in air, 
maybe the pressure is less inside an underwater bubble.  This would be a very hasty conclusion, 
and quite wrong.  If you go through exactly the same argument as we did for a drop, considering 
the equilibrium of one hemisphere, you will see immediately that there is (as for the drop) an excess 
pressure inside the bubble given again by equation 20.2.2.  And exactly the same would apply to a 
spherical drop of one liquid under the surface of a second liquid, if the two liquid are immiscible.  
But, rather than just repeat the identical derivation, let's try a different approach. 
 
Let us imagine that we have a bubble of radius a in a liquid of surface tension γ, and suppose that 
we are able, by means of a fine syringe, to inject some more air inside so as to increase the radius 
of the bubble by da at constant pressure and temperature.  The surface area of a sphere of radius a 
is A = 4πa2, so, if we increase the radius by da we increase the surface area by 8πa da, and we 
increase the volume by 4πa2 da.  The work done against the surface tension is 8πγa da, and this 
must also be equal to  4πPa2 da, where P is the excess pressure inside the bubble.  Equating these 
two expressions leads again to equation 20.2.2. 
 
What about a hollow spherical soap bubble in air?  Here the soap has two surfaces – inside and out.  
If you repeat either of the above derivations to this case, you will see that the excess pressure inside 
a hollow spherical soap bubble is 
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    20.2.2   Angle of Contact 
 
When a static quantity of liquid is in contact with an impermeable solid surface, it generally rests so 
that there is a characteristic angle (measured in the liquid) between the surface of the liquid and the 
surface of the solid.  This angle is the angle of contact, and is shown as the angle θ is figure XX.3.   
Figure XX.3(a)  shows an acute angle of contact, in which the liquid spreads out a little and "wets" 
the surface. Figure XX.3(b)  shows an obtuse angle of contact, in which the liquid "bunches up", 
and does not wet the surface, rather like drops of mercury on most surfaces, or drops of water on 
the surface of a car that has been freshly waxed. In many cases the angle of contact is close to 
either 0o or 180o, although it will be appreciated that if θ were exactly zero, the liquid would spread  
 
   
 
 
 
 
 
 
 
 
 
 
out in an infinitesimally thin layer to cover or "wet" the entire surface; and if it were exactly 180o, 
the liquid, in the absence of other forces (such as its weight!), would form a spherical globule in 
contact with the surface only at a single point. 
 
The angle of contact is determined by the nature of both surfaces, and is very sensitive to any 
surface contamination.  In order to wet a surface, water may need to be helped by a small amount 
of wetting agent or detergent; only a small amount is necessary, because only the surface, and not 
the bulk, of the liquid is involved.  The chemical nature of wetting agents and detergents is beyond 
the scope of these notes (i.e. it is beyond my scope!), but how the angle of contact depends on the 
surface tension provides a useful example of the technique of virtual work (see Section 9.4 of 
Chapter 9). 
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Figure XX.4 represents a liquid, L, (e.g. water) in contact with a solid, S, (e.g. glass) and a gas, G, 
(e.g. air).  The angle of contact is θ, and the surface tensions (energy per unit area, or, for those who 
are versed in thermodynamics, the Gibbs free energy per unit area) of the three interfaces are as 
shown.  We'll suppose that the three media extend for a distance l at right angles to the plane of the 
paper (or computer screen).  The three phases are in equilibrium.    Now, if we move the SLG 
boundary to the left by a distance δx, we create a new area l xδ  of SL interface and a new area 
l xcosθδ  of LG interface, while we lose an area l xδ  of GS interface.  The work done on the system 
is therefore γ δ γ θδ γ δSL LG GSl x l x l x+ −cos .  By the principle of virtual work, this is zero, and 
therefore  
 

     cos .θ
γ γ

γ
=

−GS SL

LG

     20.2.5 

 
The angle of contact is acute or obtuse, according to whether γGS is greater than or less than γSL.  
 
 
   20.2.3   Capillary Rise 
 
When the lower end of a narrow capillary tube is immersed in a liquid, the liquid inside the tube 
rises a little above the level of the liquid outside.  If is then very simple to calculate how far the 
liquid rises in terms of the surface tension, the angle of contact and the inside radius of the tube.  
See figure XX.5.  
 
    
 
 
 
 
 
 
 
 
 
 
 
 
The upward force due to surface tension is 2π γ θa cos ,  where a is the inside radius of the tube, 
and, if we neglect the very small mass of the liquid in the meniscus (the curved surface at the top of 
the liquid column), the weight of the liquid column is π ρa h g2 ,  and therefore  
 

     h
ga

=
2γ θ

ρ
cos .      20.2.6 

 
(Check the dimensions!) 
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Of course if θ is obtuse (as with mercury in contact with glass), h will be negative, and the level of 
the mercury in the tube will be below the outside level. 
 
 
20.3   Shear Modulus and Torsion Constant 
      
 
 
    
 
 
 
 
 
 
 
Imagine that we have a rectangular block of solid material, as shown on the left hand side of figure 
XX.6.  We now apply a couple of tangential forces F as shown on the right hand side.  (I have not 
decided to go all chatty and informal by saying “a couple” of forces; far from it – I am using the 
word “couple” in its formal sense in mechanics.)  The material will undergo an angular 
deformation, and the ratio of the tangential force per unit area to the resulting angular deformation 
is called the shear modulus or the rigidity modulus.  Its SI unit is N m−2 rad−1 and its dimensions are 
ML−1T−2θ−1.   (I’d advise against using “pascals” per radian. The unit “pascal” is best restricted to 
pressure, which is normal force per unit area, and is not quite the same thing as the tangential force 
per unit area that we are discussing here.)  You should convince yourself that the definition must 
specify the force F, not the torque provided by the couple.  If the block were twice as thick, and the 
forces were the same, you’d still get the same angular deformation. 
 
If you hold one end of a wire or rod fixed and apply a torque to the other end, this end will twist 
through an angle, and the ratio of the applied torque to the angle through which the wire twists is 
the torsion constant, c, of the wire.  You can see how the torsion constant depends on the shear 
modulus ηof the metal and the radius a and length l of the wire by the method of dimensions.  You 
can start by supposing that ,γβαη∝ lac  but you will soon find yourself in difficulty because a and 
l are each of dimension L.  However, you will probably have no difficulty with making the 
assumption that γ = −1 (the longer the wire, the easier it is to twist), and dimensional analysis will 
soon show that α = 1 and β = 4   -   which, being interpreted, meaneth that it is much more difficult 
to twist a thick wire than a thin wire.  But can we do better and get an expression other than a mere 
proportionality for the torsion constant?  Can we find the proportionality constant?   Let’s try some 
simpler problems first, and see how things go. 
 
Let us consider a long, thin strip or ribbon of metal.  By long and thin I mean that its length is much 
greater than its width, and its width is much greater than its thickness.  I can use any symbol I like 
to represent any quantity I like, so I could, if I wished, use Ξ for the length, mα for the width, and 
G2 for the thickness.  Instead, the symbols that I shall choose to represent the length, width and 
thickness of the strip are going to be, respectively, l, 2πr and δr.  This seems silly at the moment, 

F 
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θ 

FIGURE XX.6 
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but in the end you’ll be glad that I made this choice.  The strip is shown at the left hand side of 
figure XX.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I am now going to fix the upper end of the strip and apply a force F to the lower end, as shown in 
the right hand side of figure XX.7, and I can use any symbol I like to represent the displacement of 
the lower end, and I choose the symbol rφ.   This means that the angular displacement θ is equal to 

./ lr φ  The tangential force per unit area is F/(2πr δr), and therefore  
 

     ,
2 2 rr

lF
δπφ

=η      20.3.1 
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Now I’m going to restore the strip to its original shape, and then I’m going to roll it into a hollow 
cylindrical tube, so that it now looks like a metal drinking straw.  The circumference of the straw is 
2πr, its radius is r and its thickness is δr (figure XX.8).  (Now my notation is beginning to make 
some sense!) 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
I shall hold the upper end of the tube fixed and I shall apply a torque τ  = Fr to the lower end.  The 
tube will evidently twist through an azimuthal angle φ given by 
 

     .2 3

φ
δπη

=τ
l

rr      20.3.3 

 
The torsion constant of the hollow tube is therefore 
 

     .2 3
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FIGURE XX.8 
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The torsion constant of a long solid cylinder (a wire) of radius a is the integral of this from 0 to a, 
which is 
 

     .
2
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l
ac πη

=       20.3.5 

 
 
 
20.4   Viscosity 
 
Consider a river flowing over a smooth bed, as in figure XX.9. 
      
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There will be a transverse velocity gradient dv/dz, with the liquid stationary at the river bottom, 
and the speed becoming faster as we ascend from the bottom.  As a consequence of the transverse 
velocity gradient, the liquid below the dashed line will be dragged forward by the tangential force 
of the faster liquid above it, and the liquid above the dashed line will be dragged backward by the 
tangential force of the more sluggish liquid below it.  The ratio of the tangential force per unit area 
to the transverse velocity gradient is called the coefficient of dynamic viscosity, for which the usual 
symbol is η.  The dimensions of dynamic viscosity are ML−1T−1.  The CGS unit of dynamic 
viscosity is the poise.  The abbreviation for the unit is P – though it would be well to define it if you 
use it, since not everyone will recognize it.  The unit is named after a nineteenth century French 
doctor, Jean Poiseuille, who was interested in blood pressure and hence in the rate of flow of 
liquids through tubes.   That is to say, if, for a transverse velocity gradient of 1 cm s−1 per cm, the 
tangential force per unit area is 1 dyne cm−2, the dynamic viscosity is one poise.  The SI  (MKS) 
unit is the decapoise (also spelled dekapoise), though the SI unit the pascal second (Pa s), which is 
dimensionally correct, is also seen. If, for a transverse velocity gradient of 1 m s−1 per cm, the 
tangential force per unit area is 1 N m−2, the dynamic viscosity is one decapoise.   The dynamic 
viscosity of water varies from about 1.8 centipoise at 0oC to about 0.3 centipoise at 100oC. 
 

FIGURE XX.9 
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The ratio of the coefficient of dynamic viscosity to the density is the coefficient of kinematic 
viscosity,  for which the usual symbol is the Greek letter ν.  The dimensions of kinematic viscosity 
are L2T−1.  The CGS unit of kinematic viscosity is the stokes (abbreviation St). It is named after 
nineteenth century British physicist, Sir George Stokes, who made major contributions to diverse 
areas of physics.  The SI unit of kinematic viscosity is usually given simply as m2 s−1, and 1 m2 s−1 
= 104 stokes.  The kinematic viscosity of water varies from about 1.8 centistokes (1.8 % 10−6 m2 s−1) 
at 0oC to about 0.3 centistokes (3 % 10−7 m2 s−1) at 100 oC. 
 
Hydrodynamics is a huge and very difficult subject (at least I think it is), but there are a couple of 
simple problems that, if nothing else, make good homework problems.   These are Poiseuille’s law 
and the Couette viscometer. 
 
 
   20.4.1  Poiseuille’s Law 
 
Poiseuille’s law tells you how the rate of nonturbulent flow of a liquid through a cylindrical pipe 
depends on the viscosity of the liquid, the radius of the pipe, and the pressure gradient.  If all else 
fails, you can at least try dimensional analysis.  Assume that the rate of flow of liquid (in cubic 

metres per second) is proportional to ,
γ

βα 





η

dx
dPa and show by dimensional analysis that α =  −1,  

β = −4 and γ = 1, which shows that the rate of flow is very sensitive to the radius of the pipe.  That 
β = −4 tells you that if your arteries are at all constricted, even by a little bit, you had better watch 
out. Gas flow is more complicated because gases are compressible, (so are liquids, but not by 
much), but β = −4 tells you that the rate at which you can pump out gas from a system depends a 
lot on the size of the smallest tube you have between the volume that you are trying to evacuate and 
the pump.  Now let’s try and analyse it further. 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure XX.10 represents a pipe of radius a with liquid flowing to the right.  At a distance r from the 
axis of the pipe the speed of the liquid is v.  The length of the pipe is l, and there is a pressure 
gradient along the length of the pipe, the pressure at the left end being higher than the pressure at 

v F 

F v 

FIGURE XX.10 
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the right by P.  There is a velocity gradient in the pipe.  The speed of the liquid along the axis of the 
pipe is v0, and the speed at the circumference of the pipe is zero.  That is, the speed decreases from 
axis to circumference, so that the velocity gradient (dv/dr) is negative. 
 
Now consider the equilibrium of the liquid inside radius r. (It is in equilibrium because it is moving 
at constant speed.)  It is being pushed forward by the pressure gradient. This rightward force is   

.2Prπ   It is being dragged back by the viscous force acting on the area 2πrl.  This leftward force is 
),/(2 drdlr vπη−   this expression for the leftward force being positive. 

 

Therefore    Pr.
dr
dl =η−
v2      20.4.1 

 
Integrate from the axis (r = 0, v  =  v0) to r: 
 

     .
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η
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Thus the speed decreases quadratically (parabolically) as you move away from the axis.  The speed 
is zero at the circumference, and hence the speed on the axis is 
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Verify the dimensions. 
 
Now the volume flow through a cylindrical shell of radii r and r + dr is the speed times the area 

drrπ2 , which is ,
2

3

l
drPr

η
π and if you integrate that through the whole pipe, from 0 to a, you find 

that the rate of flow of liquid through the pipe (cubic metres per second) is 
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This is Poiseuille’s Law. 
 
 
   20.4.2   The Couette Viscometer 
 
A cylindrical vessel of radius b contains the liquid whose viscosity is to be measured.  A smaller, 
solid cylinder of radius a and length l is suspended from a torsion wire, whose torsion constant c is 
known, and is immersed in the liquid in the vessel, the two cylinders being coaxial.  The vessel 
containing the liquid is spun about its axis at an angular speed Ω, thus setting the liquid in motion.  
This causes a viscous torque on the inner cylinder, which is therefore pulled round through an angle 
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φ.  When the restoring torque of the torsion wire cφ is equal to the viscous torque, the system will 
be in equilibrium, and one can then calculate the viscosity η of the liquid.  We shall refer to figure 
XX.11.  In the simple analysis given below, we suppose that the angular and linear speed and 
gradients are sufficiently small that the flow is nonturbulent.  We also neglect the effects of viscous 
drag on the flat ends of the cylinder.  Thus the diameter of the cylinder, in our analysis, must be 
much less than its length. 
 
Incidentally, for a long time I thought that the word “couette” must be French for something.  It is – it’s French for 
“feather bed” or for “pigtail”.  But the Couette viscometer is actually named after a little-known nineteenth century 
French scientist, Maurice Couette. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us calculate the viscous torque on the liquid within radius r.  Notice that, since we have a 
steady-state situation, this torque is independent of r; in particular the torque on the liquid within 
radius r is the same as the torque (which we can measure with the torsion wire) on the inner 
cylinder.  The area of the curved surface of the liquid within radius r is 2πlr.  The viscous torque on 
this surface is r times η times the area times the transverse velocity gradient.  But we have to be 
careful about this last term.  If the whole body of the liquid were rotating as a solid body with 
angular speed ω, the speed at radius r would be rω and hence there would be a transverse velocity 
gradient equal to ω − but no viscous drag!  But the liquid is not, of course, rotating as a solid, and ω 

Ω 

ω 

a b r 

FIGURE XX.11 
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(as well as v) is a function of r.  Since v  =  rω, the velocity gradient is ,ω+
ω

=
dr
dr

dr
dv and the 

only part of this that goes into the expression for the viscous torque is the part .
dr
dr ω   Thus the 

expression for the torque on the liquid within radius r (and hence also on the inner cylinder) is 
 

    ..2..
dr
drrlr ω

πη=τ       20.4.5 

 

That is,   .
2 3lrdr

d
πη

τ
=

ω       20.4.6 

 
Integration from r = a, ω = 0 to r = b, ω = Ω gives 
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In equilibrium, this is equal to cφ, where c is the torsion constant of the suspension and φ is the 
angle through which the inner cylinder has turned, and hence the viscosity can be determined.  You 
should, as usual, check the dimensions of equation 20.4.7. 


