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CHAPTER 5 

ABSORPTION, SCATTERING, EXTINCTION 

AND THE EQUATION OF TRANSFER 

 

 

5.1   Introduction 

 

As radiation struggles to make its way upwards through a stellar atmosphere, it may be 

weakened by absorption and scattering.  The combined effect of absorption and scattering is 

called extinction.   Scattering may simply be by reflection from dust particles.  If the radiation 

interacts with an atom, the atom may be excited to a higher energy level and almost immediately 

(typically on a time-scale of nanoseconds) the atom drops down to its original level and emits a 

photon of the same frequency as the one it absorbed.  Such a process - temporary absorption 

followed almost immediately by re-emission without change in wavelength - is probably best 

described in the present context as scattering.  Individual atoms in a stellar atmosphere generally 

radiate dipole radiation; however, since many randomly oriented atoms take place in the process, 

the scattering can be regarded as isotropic.  If, however, the excited atom collides with another 

atom before re-emission, the collision may be super-elastic; as the atom falls to a lower state, the 

energy it gives up, instead of  being radiated as a photon, goes to kinetic energy of the colliding 

atoms.  The radiation has been converted to kinetic energy.  This process is absorption. 

 

 

5.2    Absorption   

 

To start with, let us suppose that the predominating mechanism is absorption with no scattering.  

We can define a linear absorption coefficient α as follows.  Let the specific intensity at some 

level in an atmosphere be I.  At a level in the atmosphere higher by a distance dx,  the  specific 

intensity has dropped, as a result of absorption, to I  +  dI .  (Here dI, by the convention of 

differential calculus, means the increase in I, and it is in this case negative.  The quantity −dx, 

which is positive, is the decrease in I.)  The linear absorption coefficient α is defined such that 

the fractional decrease in the specific intensity over a distance dx is given by 

 

 dx
I

dI
α=−  5.2.1 

 

The coefficient is of dimension L
-1

 and the SI unit is m
-1

. In general, α will depend on frequency 

or wavelength, and, at a particular wavelength, the equation would be written 

 

 dx
I

dI
)(να=−

ν

ν  5.2.2 

 

If equation 5.2.1 is integrated over a finite distance, for a slab of atmosphere, say, between x = 0 , 

where the specific intensity is I
 0

, and x = X, where the specific intensity is I, it becomes 
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 α−= ∫

X

dxxII
0

0 )(exp  5.2.3 

 

And if  α is uniform and not a function of x, this becomes 

 

             I = I
 0

 exp(−αX)  5.2.4 

 

Now let αa = α/n, so that equation 5.2.1 becomes -dI/I = αandx and equation 5.2.4   becomes I 

= I
 0

exp (−αanX), where n is the number of atoms per unit volume.  Then αa is the atomic 

absorption coefficient, or atomic absorption cross-section.  It is of dimension L
2
 and the SI unit 

is m
2
. 

 

In a similar manner, we can define αm = α/ρ, where ρ is the mass density, as the mass absorption 

coefficient, with corresponding modifications in all the other equations.  It is of dimension L
2
M

-1
 

and the SI unit is m
2
 kg

-1
. 

 

We might also mention here that in laboratory chemistry, one comes across the word absorbance 

of a solution.  This is the linear absorption coefficient divided by the concentration of the solute.  

While this word in not usually encountered in stellar atmosphere theory, it is mentioned here 

partly because it is very similar in concept to the several concepts discussed in this section, and 

also because of the similarity of the word to the rather different absorptance defined in Chapter 

2.  In chemical texts, the exponential decrease of intensity with distance is often referred to as the 

Lambert-Beer Law, or simply as Lambert's Law.  This is mentioned here merely to point out that 

this is not at all related to the Lambert's Law discussed in Chapter 1. 

 

 

 

5.3   Scattering, Extinction and Opacity 

 

If the predominating mechanism is scattering with no absorption, we can define in a similar 

manner  linear, atomic and mass scattering coefficients, using the symbol σ rather than α.  For 

the physical distinction between absorption and scattering, see section 5.1.  And if both 

absorption and scattering are important, we can define linear, atomic and mass extinction 

coefficients, using the symbol κ, where κ = α + σ. 

 

All the foregoing equations are valid, whether we use linear, atomic or mass absorption, 

scattering or extinction coefficients, and whether we refer to radiation integrated over all 

frequencies or whether at a particular wavelength or within a specified wavelength range. 

 

The mass extinction coefficient is generally referred to as the opacity. 
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5.4   Optical depth 

 

The product of linear extinction coefficient  and distance, or, more properly, if  the extinction 

coefficient varies with distance, the integral of the extinction coefficient with respect to distance, 

dxx)(∫ κ , is the optical depth, or optical thickness, τ.  It is dimensionless.  Specific intensity falls 

off with optical depth as τ−= eII 0 .  Thus optical depth can also be defined by ln (I
0
/I).   While 

the optical depth ln (I
0
/I) is generally used to describe how opaque a stellar atmosphere or an 

interstellar cloud is, when describing how opaque a filter is, one generally uses log10 (I
0
/I), which 

is called the density d of the filter.  Density is 0.4343 times optical depth.  If a star is hidden 

behind a cloud of optical depth τ it will be dimmed by 1.086τ magnitudes.  If it is hidden behind 

a filter of density d it will be dimmed by 2.5d magnitudes.  The reader is encouraged to verify 

these assertions. 

 

 

5.5   The Equation of  Transfer. 

 

The equation of transfer deals with the transfer of radiation through an atmosphere that is 

simultaneously absorbing, scattering and emitting.   

 

      dx 

  

                α(ν) 

                        σ(ν)              
                  jν                 

 

 

 FIGURE V.1 

 

Suppose that, between x and x + dx  the absorption coefficient and the scattering coefficient at 

frequency ν  are α(ν) and σ(ν), and the emission coefficient per unit frequency interval is .ννdj   

In this interval, suppose that the specific intensity per unit frequency interval increases from νI  

to νν + dII  (d νI  might be positive or negative). The specific intensity will be reduced by 

absorption and scattering and increased by emission.  Thus: 

 

       [ ] .)()()( dxjIIdI ν−νσ+να−= νννν     5.5.1 

   

This is one form - the most basic form - of the equation of transfer.  Notice that α and σ  do not 

have a subscript. 

 
 

5.6   The Source Function  (Die Ergiebigkeit) 
 

This is the ratio of the emission coefficient to the extinction coefficient.  A review of the 

dimensions of these will show that the dimensions of source function are the same as that of 

νI  νν + dII  
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specific intensity, namely W m
-2

 sr
-1

 (perhaps per unit wavelength or frequency interval).  The 

usual symbol is S.   Thus 

 

 
)()()( νκ

=
νσ+να

= νν
ν

jj
S  5.6.1 

 

Imagine a slice of gas of thickness dx.  Multiply the numerator and denominator of  the right 

hind side of equation 5.6.1 by dx.  Observe that the numerator is now the specific intensity 

(radiance) of the slice, while the denominator is its optical thickness.  Thus an alternative 

definition of source function is specific intensity per unit optical thickness.  Later, we shall 

evaluate the source function in an atmosphere in which the extinction is pure absorption, in 

which it is purely scattering, and in which it is a bit of each. 

 

 

 

5.7   A Series of Problems 

 

I am now going to embark upon a series of problems that at first sight may appear to be not very 

relevant to stellar atmospheres, but the reader is urged to be patient and look at them, partly 

because they make use of many of the ideas encountered up to this point, and also because they 

culminate in determining how the flux and the mean specific intensity in an atmosphere increase 

with optical depth in terms of the source function. 

 

 

Problem 1 

 

An infinite plane radiating surface has a uniform specific intensity (radiance) I.  What is the flux 

(irradiance) at a point P, situated at a height h above the surface? 

 

We have already answered that question in equation1.15.3, and the answer, which, 

unsurprisingly since the plane is infinite in extent, is independent of  h, is πI, so let's get on with  

 

 

Problem 2 

 

Same as Problem 1, except that this time the space between the radiating plane and the point P is 

filled with a uniform gas of absorption coefficient α.  The specific intensity (radiance) of the 

surface, we are told, is, following astrophysical custom, I. Unfortunately I shall also be 

compelled to make use of "intensity" in the "standard" sense of Chapter 1, and for that I shall use 

the symbol  I. 
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The elemental area is r dr dφ, or, since r = h tan θ, it is h
2
 tan θ sec

2θ dθdφ. 

The intensity of the elemental area towards P is the specific intensity (radiance) times the 

projected area: 

 

 dI = Ih
2
 tan θ sec

2
 θ dθ dφ cos θ 

 

If there were no absorption, the irradiance of P by the elemental area would be  

 

 dI cos θ  / (h
2
sec

2θ), 

 

which becomes   I sin θ cos θ dθ dφ. 

 

But it is reduced by absorption by  a factor e
−τsec θ

 , where τ = αh.  Therefore the irradiance of P 

by the elemental area is 

 

 Ie
−τsecθ

sin θ cos θ dθ dφ.   

 

For the irradiance at P (or "flux" in the astrophysics sense) by the entire infinite plane  

we integrate from φ  = 0 to 2π  and θ  = 0 to π/2, to obtain 

 

 θθθπ θτ−
π

∫ deI cossin2 sec

2/

0

  

 

If we now write x = sec θ, this becomes 

 

 Irradiance at P = 2πIE3(τ), 

 

P 

θ 

τ = αh 

dφ 

FIGURE  V.2 
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and we hope that the reader has not forgotten the meaning of E3  -  if you have, as the game of 

snakes and ladders would say, Go back to Chapter 3.  Note that, at τ  = 0,  this becomes πI, as 

expected. 

 

 

Problem 3 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

A point P is situated at a height h above an infinite plane slice of gas of optical thickness δτ and 

source function S.  There is nothing between P and the slice of gas. What is the flux (irradiance) 

at P?   

 

At first glance this appears to be identical to Problem 1, except that the specific intensity of the 

slice is Sδt.  However, a more careful look at the diagram will reveal that the specific intensity of 

the slice is by no means uniform.  It is darkest directly below P, and, when P looks farther from  

his nadir, the slice gets brighter and brighter, being S sec θ δt  at an angle θ.  The upwards flux 

("irradiance") at P is therefore 

 

 F+ = 2πSδt ∫
2/

0

π

sec θ cos θ sin θ dθ  = 2π Sδt 

 

 

Problem 4 

 

Same as Problem 3, except that this time we'll place an absorbing gas of optical thickness t 

between P and the slice δt.   

 

 

 

 

 

 

S Radiance S δt Ssec θ δt 

P 

θ 

FIGURE V.3 
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In that case the flux (irradiance) at P from an element at an angle θ is reduced by e
-t sec θ

 and 

consequently the flux at P from the entire slice is 

 

 ∫
π

+ δπ=θθθθδπ=
2/

0
.2sincossec2 tSdtSF  

 

If we write  x = sec θ, we very soon see that this is  

 

 Flux (irradiance) at P = 2πSδtE2(t) 

 

 

Problem 5  (an important result in atmosphere theory) 

 

Now consider a point P at an optical depth τ in a stellar atmosphere. (The use of the word 

"depth" will imply that τ is measured downwards from the surface towards the centre of the star.)  

We shall assume a plane parallel atmosphere i.e. a shallow atmosphere, or one than is shallow 

compared with the radius of the star, or we are not going to go very deep into the atmosphere.  

The point P is embedded in an absorbing, scattering, emitting gas.  The flux coming up from 

below is equal to contributions from all the slices beneath P, from t = τ to t = ∞: 

 

 dttEtSF )()(2 2 τ−π= ∫
∞

τ

+  

The flux pouring down from above is the contribution from all the slices above, from t = 0 to t = 

τ : 

 

t 

Radiance  S δt secθ e-tsecθ 

t secθ 

Radiance S δt e
-t 

FIGURE V.4 

θ 
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 dttEtSF )()(2
0

2 −τπ= ∫
τ

−  

 

The net upward flux at a point P at an optical depth τ in an absorbing, scattering, emitting 

atmosphere is 

 

 ]dttEtSdttEtSF )()()()(2)(
0

22 −τ−τ−



π=τ ∫∫

τ∞

τ

 5.7.1 

 

The integral H is just 1/(4π) times this. 

 

The reader is now asked to find the integrals J(τ) and K(τ).  These should be given in the form of 

integrals that include a source function S(t) and an exponential integral function  E(t − τ) or      

E(τ − t).  It is important to get the argument the right way round.  One way is right; the other is 

wrong. 

 

Problem 6 

 

This is an easier problem, though the result is nevertheless important. 

 

 

 

   

 

 

 

 

         

 

 

 

 

Figure V.5 shows a slab of gas of optical thickness τ.  The observer is supposed to be to the right 

of the slab, and optical depth is measured from the right hand face of the slab towards the left.  

At an optical depth t within the slab is a slice of optical thickness dt.  The slab is supposed to 

have a uniform source function S throughout.  Source function is specific intensity per unit 

optical thickness, so the specific intensity of the slice is Sdt.  The emergent intensity from this 

slice, by the time that it reaches the right hand surface of the slab, is Se dt
t− .  The emergent 

specific intensity of the entire slab is the sum of the contributions of all such slices throughout 

the slab; that is dtSe t

∫
τ

−

0
.  If the source function is uniform throughout the slab, so that S is not a 

function of t, we find that the emergent specific intensity of the slab is 

 

( )τ−−= eSI 1  5.7.2 

τ dt t 

Sdt Se
-t
dt FIGURE V.5 
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Problem 7.  A quantity of hot gas is held in a box 50 cm long.  The emission coefficient of the 

gas is 0.06 W sr
−1

 m
−3

 and the extinction coefficient is 0.025 cm
−1

.  What is the emergent 

specific intensity (radiance)?    (I make it 1.71 × 10
−2

 W m
−2

 sr
−1

.) 

 

5.8   Source function in scattering and absorbing atmospheres.   

 

Suppose that at some point in a stellar atmosphere the mean specific intensity per unit frequency 

interval surrounding it is Jν.   If all of the radiation arriving at that point is isotropically scattered, 

the emission coefficient jν  will simply be σ(ν)Jν .  But from equation 5.6.1 we see that in a 

purely scattering atmosphere, the ratio of jν  to σ(ν) is the source function.  Thus we see that, for 

an atmosphere in which the extinction is due solely to scattering, the source function is just 

 

νν = JS . 5.8.1 

 

If on the other hand the extinction is all due to absorption, we have Sν = jν/α(ν).  If we multiply 

top and bottom by dx, the numerator will be dIν , the increase in the specific intensity in a 

distance dx , while the denominator is the absorptance in a layer of thickness dx.  Thus the source 

function in a purely absorbing atmosphere is the ratio of the specific intensity to the absorptance.  

But this ratio is the same for all surfaces, including that of a black body, for which the 

absorptance is unity.  Thus in an atmosphere in which the extinction is due solely to absorption, 

the source function is equal to the specific intensity (radiance) of a black body, for which we 

shall use the symbol B. For a purely absorbing atmosphere, we have 

 

     .νν = BS       5.8.2 

 
In an atmosphere in which extinction is by both scattering and absorption the source function is a 

linear combination of equations 5.8.1 and 5.8.2, in proportion to the relative importance of the 

two processes: 

 

 ννν
νσ+να

νσ
+

νσ+να

να
= JBS

)()(

)(

)()(

)(
 5.8.3 

 

 

5.9   More on the equation of transfer. 

 

Refer to equation 5.5.1.  We see from what had been subsequently discussed that  

[α(ν) + σ(ν)]dx = dτ(ν)  and that jν dx = dτ(ν).  Therefore 

 

 νν
ν −=
ντ

IS
d

dI

)(
, 5.9.1 

 

and this is another form of the equation of transfer. 
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Now consider a spherical star with a shallow atmosphere ("plane parallel atmosphere").  In figure 

V.6, radial distance r is measured radially outwards from the centre of the star.  Optical depth is 

measured from outside towards the centre of the star.  The thickness of the layer is dr.  The 

coordinate z is measured from the centre of the star towards the observer, and the path length 

through the atmosphere in that direction at angle θ  is dz = drsecθ.  The equation of transfer can 

be written 

 

 [ ] .)()()( dzjIdI ννν −θνκ−=θ  5.9.2 

 

Now  κ ν θ τ ν( ) sec ( )dz d= −  and  jν = κ (ν )Sν .  Therefore 

 

 
( )
( )

( ) νν
ν −θ=

ντ

θ
θ SI

d

dI
cos  5.9.3 

 

This is yet another form of the equation of transfer.  The quantity cosθ  is often written µ, so that 

equation 5.9.3 is often written 

 

 
( )
( )

( ) νν
ν −θ=

ντ

θ
µ SI

d

dI
 5.9.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  

 

 

 

 

 

 

τ 
 

dz = dr secθ 

θ 

z 

   dτ 

FIGURE V.6 
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Let us do ∫ ω
π

d
4

1
 to each term in equation 5.9.4.  By ∫ I mean integrate over 4π steradians.  In 

spherical coordinates d d dω θ θ φ= sin .  We obtain 

 

 
( )
( ) ∫∫∫ ω

π
−ω

π
=ωθ

ντ

θ

π
νν

ν dSdId
d

dI

4

1

4

1
cos

4

1
 5.9.5 

 

The left hand side is dHν/dτ(ν) and the first term on the right hand side is Jν.  (See the definitions 

- equations 4.5.2 and 4.7.1.)  In the case of isotropic scattering, the source function is isotropic so 

that, in this case 

 

 
( ) νν

ν −=
ντ

SJ
d

dH
, 5.9.6 

 

 

and this is another form of the equation of transfer. 

On the other hand, if we do ∫ ωθ
π

dcos
4

1
 to each term in equation 5.15, we obtain 

 

 
( )
( )

ωθ
π

−ωθ
π

=ωθ
ντ

θ

π ∫ ∫∫ νν
ν dSdId

d

dI
cos

4

1
cos

4

1
cos

4

1 2  5.9.7 

 

In the case of isotropic scattering the last integral is zero, so that 

 

 ,
)(

ν
ν =
ντ

H
d

dK
 5.9.8 

 

and this is yet another form of the equation of transfer. 

 

Now Hν is independent of optical depth (why? - in a plane parallel atmosphere, this just 

expresses the fact that the flux (watts per square metre) is conserved), so we can integrate 

equation 5.9.8 to obtain 

 

 .constant)( +ντ= νν HK  5.9.9 

 

Note also that Hν = Fν /(4π), and, if the radiation is isotropic, K Jν ν= / ,3  so that 

 

 
( )

)0(
4

3
ν

ν +
π

ντ
= J

F
J v  5.9.10 
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where Jν(0) is the mean specific intensity (radiance) at the surface, which is half the specific 

intensity at the surface (since the radiance of the sky above the surface is zero).  Thus 

 

 ( ) ( ) ( )π== ννν 2/00
2
1 FIJ  5.9.11 

 

Therefore ( )( )ντ+
π

= ν
ν 2

31
2

F
J  5.9.12 

 

This shows, to this degree of approximation (which includes the approximation that the radiation 

in the atmosphere is isotropic - which can be the case exactly only at the centre of the star) how 

the mean specific intensity increases with optical depth. 

 

Let T  be the temperature at optical depth τ. 

 

Let T0 be the surface temperature. 

 

Let Teff be the effective temperature, defined by 4

eff)0( TF σ= , 

 

We also have π σ π σJ T and J T F= = =4

0

4 1
2

0( ) .  

From these we find the following relations between these temperatures: 

 

 

 ( ) ( ) 4

eff2
3

2
14

02
34 11 TTT τ+=τ+=  5.9.13 

 

 4

eff

44

0
2

1

32

2
TTT =

τ+
=  5.9.14 

 

 4

0

44

eff 2
32

4
TTT =

τ+
=  5.9.15 

  

Note also that  T = Teff at τ = 2/3, and T = T0  at τ = 0. 

 

 


