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CHAPTER 10 

LINE PROFILES 

 

 

 

10.1 Introduction. 

 

Spectrum lines are not infinitesimally narrow; they have a finite width.  A graph of 

radiance or intensity per unit wavelength (or frequency) versus wavelength (or 

frequency) is the line profile.   There are several causes of line broadening, some internal 

to the atom, others external, and each produces its characteristic profile.  Some types of 

profile, for example, have a broad core and small wings; others have a narrow core and 

extensive, broad wings.  Analysis of the exact shape of a line profile may give us 

information about the physical conditions, such as temperature and pressure, in a stellar 

atmosphere.   

 

 

10.2   Natural Broadening (Radiation Damping) 

 

The classical oscillator model of the atom was described in section 9.2.1.  In this model, 

the motion of the optical electron, when subject to the varying electromagnetic field of a 

light wave, obeys the differential equation for forced, damped, oscillatory motion: 
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Because the oscillating (hence accelerating) electron itself radiates, the system loses 

energy, which is equivalent to saying that the motion is damped, and γ is the damping 

constant.   

 

Electromagnetic theory tells us that the rate of radiation of energy from an accelerating 

electron is 
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(The reader, as always, should check the dimensions of this and all subsequent 

expressions.) 

 

For an electron that is oscillating, the average rate of loss of energy per cycle is 
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Here the bar denotes the average value over a cycle. 
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If the amplitude and angular frequency of the oscillation are a and ω0, the maximum 

acceleration is 2

0ωa and the mean square acceleration is .4

0

2

2
1 ωa    The energy (kinetic plus 

potential) of the oscillating electron is 
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Thus we can write for the average rate of loss per cycle of energy from the system by 

electromagnetic radiation: 
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The energy therefore falls off according to 
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The radiated wavelength is given by 0/2 ωπ=λ c , so that equation 10.2.6 becomes 
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It will be recalled from the theory of lightly damped oscillations that the solution to 

equation 10.2.1 shows that the amplitude falls off with time as exp(−
2
1 γt), and that the 

energy falls off as exp(−γt).  Thus we identify the coefficient of W on the right hand side 

of equation 10.2.7 as the classical radiation damping constant γ: 
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Numerically, if γ is in s

-1
 and λ is in m, 

 

    .10223.2
2

5

λ

×
=γ

−

     10.2.9 

 

We are now going to calculate the rate at which energy is transported per unit area by an 

electromagnetic wave, and also to calculate the rate at which an optically thin slab of a 

gas of classical oscillators absorbs energy, and hence we are going to calculate the 

classical absorption coefficient.  We start by recalling, from elementary 

electromagnetism, that the energy held per unit volume in an electric field is ED ⋅
2
1  and 
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the energy held per unit volume in a magnetic field is HB ⋅
2
1 .   In an isotropic medium, 

these become 2

2
12

2
1 and HE µε , and, in vacuo, they become .and 2

02
12

02
1 HE µε  

 

For an oscillating electric field of the form tEE ω= cosˆ , the average energy per unit 

volume per cycle is .ˆ 2
04

12
02

1 EE ε=ε   Similarly for an oscillating magnetic field, the 

average energy per unit volume per cycle is .ˆ 2

04
1 Hµ   An electromagnetic wave consists 

of an electric and a magnetic wave moving at speed c, so the rate at which energy is 

transmitted across unit area is ( ) ,ˆˆ 2

04
12

04
1 cHE µ+ε  and the two parts are equal, so that the 

rate at which energy is transmitted per unit area by a plane electromagnetic wave is 

.ˆ 2

02
1 cEε  

 

Now we are modelling the classical oscillator as an electron bound to an atom, and being 

subject to a periodic force t
m

Ee
ωcos

ˆ
 from an electromagnetic wave.  The rate of 

absorption of energy by such an oscillator (see, for example, Chapter 12 of Classical 

Mechanics is 
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We imagine a plane electromagnetic wave arriving at (irradiating) a slab of gas 

containing N classical oscillators per unit area, or n per unit volume.   The rate of arrival 

of energy per unit area, we have seen, is  .ˆ 2

02
1 cEε  The rate of absorption of energy per 

unit area is 
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The absorptance (see Chapter 2, section 2.2) is therefore  
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and the linear absorption coefficient is 
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[A reminder here might be in order.  Absorptance a is defined in section 2.2, and in the 

notation of figure IX.1, the absorptance at wavelength λ would be  ( ) ).c(/)()c( λλλ λ− III   

Absorption coefficient α is defined by equation 5.2.1:  ./ dxIdI α=−   For a thick slice of 

gas, of thickness t, this integrates, in the notation of figure IX.1, to 

).exp()c()( tII α−=λ λλ   But for an optically thin gas, which is what we are considering, 

unless stated otherwise, in this chapter, this becomes ( ) .)c(/)()c( tIII α=λ− λλλ   Thus, 

for an optically thin gas, absorptance is just absorption coefficient times thickness of the 

gas.  And the relation between particle density n and column density N is N = nt.]  

  

We can write ( )( )ω+ωω−ω=ω−ω 00

22

0 .  Let us also write ω as 2πν.   Also, in the near 

vicinity of the line, let us make the approximation ω0 + ω = 2ω.  We then obtain for the 

absorption coefficient, in the vicinity of the line,   

 

            

   

( )

.

4
16

2

2

00

2

2





















π

γ
+ν−νεπ

γ
=α

mc

ne
    10.2.12 

 

Exercise:  Make sure that I have made no mistakes in deriving equations 10.2.10,11 and 

12, and check the dimensions of each expression as you go.  Let me know if you find 

anything wrong. 

 

Now the equivalent width in frequency units of an absorption line in an optically thin 

layer of gas of geometric thickness t is (see equation 9.1.6) 
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Exercise:  (a) For those readers who (understandably) object that expression 10.2.12 is 

valid only in the immediate vicinity of the line, and therefore that we cannot integrate 

from ∞+∞− to , integrate expression 10.2.11 from 0 to ∞. 

 

       (b) For the rest of us, integrate equation10.2.11 from ∞+∞−=ν−ν to0 .  A 

substitution θγ=ν−νπ tan)(4 0  will probably be a good start. 

 

We obtain 
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where W
(ν)

 is in Hz and N is in m
-2

.  Thus the classical oscillator model predicts that the 

equivalent width in frequency units is independent of the frequency (and hence 
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wavelength) of the line, and also independent of the damping constant.   If we express the 

equivalent width in wavelength units (see equation 9.1.3), we obtain: 
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This is the same as equation 9.2.2.   

 

When we discussed this equation in Chapter 9, we pointed out that the equivalent widths 

of real lines differ from this prediction by a factor f12, the absorption oscillator strength, 

and we also pointed out that N has to be replaced by N
1
, the column density of atoms in 

the initial (lower) level. Thus, from this point, I shall replace N with N1f12.  However, in 

this chapter we are not so much concerned with the equivalent width, but with the line 

profile and the actual width.  The width of an emission line in this context is commonly 

expressed as the full width at half maximum (FWHM) and the width of an absorption line 

as the full width at half minimum (FWHm).  (These are on no account to be confused 

with the equivalent width, which is discussed in section 9.1.)  Note that some writers use 

the term “half-width”.  It is generally not possible to know what a writer means by this. 

 

In terms of the notation of figure IX.1 (in which “c” denotes “continuum”), but using a 

frequency rather than a wavelength scale, the absorptance at frequency ν is 
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The profile of an absorption line is thus given by 
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For radiation damping we have 

 

    

   

( )

.

4
16

)(
2

2

00

2

2

121




















+ν−ν

=ν

π

γ
επ

γ

mc

ef
a

N
   10.2.18 

 

The maximum value of the absorptance (at the line centre) is  
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This quantity is also 
)c(

)()c( 0

ν

νν ν−

I

II
and it is also known as the central depth d of the 

line.  (Be sure to refer to figure IX.1 to understand its meaning.)  I shall use the symbol d 

or a(ν0) interchangeably, according to context. 

 

It is easy to see that the value of ν−ν0 at which the absorptance is half its maximum value 

is γ/(4π).  That is to say, the full width at half maximum (FWHM) of the absorptance, 

which I denote as w, is, in frequency units: 
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γ
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(In wavelength units, it is λ2
/c times this.) This is also the FWHm of the absorption 

profile. 

 

Equation 10.2.18 can be written 
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The absorption line profile (see equation 10.2.1) can be written 
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Notice that at the line centre, Iν(ν0)/Iν(c) = 1 minus the central depth; and a long way 

from the line centre, Iν(ν) = Iν(c), as expected.  This type of profile is called a Lorentz 

profile. 

 

From equations 10.2.14 (but with N1f12 substituted for N), 10.2.19 and 10.2.20, we find 

that 

       Equivalent width = ×
π

2
 central depth × FWHm    

 

             1.571 × central depth × FWHm.  10.2.23 

 

This is true whether equivalent width and FWHm are measured in frequency or in 

wavelength units.  (It is a pity that, for theoretical work, frequency is more convenient 

than wavelength, since frequency is proportional to energy, but experimentalists often 

(not invariably!) work with gratings, which disperse light linearly with respect to 

wavelength!)  
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Indeed the equivalent width of any type of profile can be written in the form 

 

       Equivalent width = constant ×  central depth × FWHm,  10.2.24 

 

the value of the constant depending upon the type of profile. 

 

In photographic days, the measurement of equivalent widths was a very laborious 

procedure, and, if one had good reason to believe that the line profiles in a spectrum were 

all lorentzian, the equivalent with would be found by measuring just the FWHm and the 

central depth.  Even today, when equivalent widths can often be determined by computer 

from digitally-recorded spectra almost instantaneously, there may be occasions where 

low-resolution spectra do not allow this, and all that can be honestly measured are the 

central depths and equivalent widths.  The type of profile, and hence the value to be used 

for the constant in equation 10.2.14, requires a leap of faith. 

 

It is worth noting (consult equations 10.2.4,19 and 20) that the equivalent width is 

determined by the column density of the absorbing atoms (or, rather, on N1f12), the 

FWHm is determined by the damping constant, but the central depth depends on both.  

You can determine the damping constant by measuring the FWHm. 

 

The form of the Lorentz profile is shown in figure  X.1 for two lines, one with a central 

depth of 0.8 and the other with a central depth of 0.4.  Both lines have the same 

equivalent width, the product wd being the same for each.  Note that this type of profile 

has a narrow core, skirted by extensive wings. 

  

)(ννI  

Frequency→ 



 8 

 

Of course a visual inspection of a profile showing a narrow core and extensive wings, 

while suggestive, doesn’t prove that the profile is strictly lorentzian.  However, equation 

10.2.22 can be rearranged to read 
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This shows that if you make a series of measurements of Iν(ν) and plot a graph of the left 

hand side versus (ν−ν0)
2
, you should obtain a straight line if the profile is lorentzian, and 

you will obtain the central depth and equivalent width (hence also the damping constant 

and the column density) from the intercept and slope as a bonus.  And if you don’t get a 

straight line, you don’t have a Lorentz profile. 

 

 

It will be recalled that the purely classical oscillator theory predicted that the equivalent 

widths of all lines (in frequency units) of a given element is the same, namely that given 

by equation 10.2.14.  The obvious observation that this is not so led us to introduce the 

emission oscillator strength, and also to replace N by N1.    Likewise, equation 10.2.20 

predicts that the FWHm (in wavelength units) is the same for all lines.  (Equation 10.2.20 

gives the FWHm in frequency units.  To understand my caveat “in wavelength units”, 

refer also to equations 10.2.8 and 10.2.9.  You will see that the predicted FWHm in 

wavelength units is 
2

0

2

3 mc

e

ε
 = 1.18 × 10

-14 
m, which is exceedingly small, and the core, at 

least, is beyond the resolution of most spectrographs.)  Obviously the damping constants 

for real lines are much larger than this.  For real lines, the classical damping constant 

γ has to be replaced with the quantum mechanical damping constant Γ.   

 
At present I am describing in only a very qualitative way the quantum mechanical 

treatment of the damping constant.  Quantum mechanically, an electromagnetic wave is 

treated as a perturbation to the hamiltonian operator.  We have seen in section 9.4 that 

each level has a finite lifetime – see especially equation 9.4.7.  The mean lifetime for a 

level m is 1/Γm.  Each level is not infinitesimally narrow.  That is to say, one cannot say 

with infinitesimal precision what the energy of a given level (or state) is.  The uncertainty 

of the energy and the mean lifetime are related through Heisenberg’s uncertainty 

principle.  The longer the lifetime, the broader the level.  The energy probability of a 

level m is given by a Lorentz function with parameter Γm, given by equation 9.4.7 and 

equal to the reciprocal of the mean lifetime.  Likewise a level n has an energy probability 

distribution given by a Lorentz function with parameter Γn.  When an atom makes a 

transition between m and n, naturally, there is an energy uncertainty in the emitted or 

absorbed photon, and so there is a distribution of photons (i.e. a line profile) that is a 

Lorentz function with parameter Γ = Γm  + Γn.   This parameter Γ must replace the 

classical damping constant γ.  The FWHm of a line, in frequency units, is now Γ/(2π), 

which varies from line to line. 
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Unfortunately it is observed, at least in the spectrum of main sequence stars, if not in that 

of giants and supergiants, that the FWHms of most lines are about the same!  How 

frustrating!  Classical theory predicts that all lines have the same FWHm.  We know 

classical theory is wrong, so we go to the trouble of doing quantum mechanical theory, 

which predicts different FWHms from line to line.  And then we go and observe main 

sequence stars and we find that the lines all have the same FWHm (admittedly much 

broader than predicted by classical theory.) 

 

The explanation is that, in main sequence atmospheres, lines are additionally broadened 

by pressure broadening, which also gives a Lorentz profile, which is generally broader 

than, and overmasks, radiation damping.  (The pressures in the extended atmospheres of 

giants and supergiants are generally much less than in main sequence stars, and 

consequently lines are narrower.)  We return to pressure broadening in a later section.  

 

 

10.3    Thermal Broadening. 

 

Let us start with an assumption that the radiation damping broadening is negligible, so 

that, for all practical purposes the spread of the frequencies emitted by a collection of 

atoms in a gas is infinitesimally narrow.  The observer, however, will not see an 

infinitesimally thin line.  This is because of the motion of the atoms in a hot gas.  Some 

atoms are moving hither, and the wavelength will be blue-shifted; others are moving yon, 

and the wavelength will be red-shifted.  The result will be a broadening of the lines, 

known as thermal broadening.   The hotter the gas, the faster the atoms will be moving, 

and the broader the lines will be.  We shall be able to measure the kinetic temperature of 

the gas from the width of the lines. 

 

First, a brief reminder of the relevant results from the kinetic theory of gases, and to 

establish our notation.   

 

Notation: c  = speed of light 

  V = velocity of a particular atom = zyx ˆˆˆ wu ++ v  

  V = speed of that atom = ( )2
1

222 wu ++ v  

 

        Vm = modal speed of all the atoms 
m

kT

m

kT
414.1

2
==  

 

  V  = mean speed of all the atoms   
m

kT

m

kT
596.1

8
=

π
= = 1.128Vm 

 

  VRMS  = root mean square speed of all the atoms    

                                                                     =
m

kT

m

kT
732.1

3
= =  1.225Vm 
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The Maxwell distribution gives the distribution of speeds.  Consider a gas of N atoms, 

and let NVdV be the number of them that have speeds between V and V + dV.  Then  
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π
=    10.3.1 

 

More relevant to our present topic is the distribution of a velocity component.  We’ll 

choose the x-component, and suppose that the x-direction is the line of sight of the 

observer as he or she peers through a stellar atmosphere.  Let Nudu be the number of 

atoms with velocity components between u and du.   Then the gaussian distribution is 
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which, of course, is symmetric about u = 0. 

 

Now an atom with a line-of-sight velocity component u gives rise to a Doppler shift 

ν − ν0, where (provided that u
2
  <<  c

2
)  .

0

0

c

u
=

ν

ν−ν
  If we are looking at an emission 

line, the left hand side of equation 10.3.2 gives us the line profile )(/)( 0νν νν II  (provided 

the line is optically thin, as is always assumed in this chapter unless specified otherwise).  

Thus the line profile of an emission line is  
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This is a gaussian, or Doppler, profile.  

 

It is easy to show that the full width at half maximum (FWHM) is 
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This is also the full width at half minimum (FWHm) of an absorption line, in frequency 

units.   This is also the FWHM or FWHm in wavelength units, provided that λ0 be 

substituted for ν0. 

The profile of an absorption line of central depth d ( = 
)c(

)()c( 0

ν

νν ν−

I

II
) is 
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which can also be written 
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(Verify that when ν − ν0 = ,
2
1 w the right hand side is .1

2
1 d−   Do the same for equation 

10.2.22.) 

 

In figure X.2, I draw two gaussian profiles, each of the same equivalent width as the 

lorentzian profiles of figure X.1, and of the same two central depths, namely 0.4 and 0.8.  

We see that a gaussian profile is “all core and no wings”.   A visual inspection of a profile 

may lead one to believe that it is probably gaussian, but, to be sure, one could write 

equation 10.3.6 in the form  

 

  
( )

2

2

0 16ln
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)()c(
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w
d

I
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 ν−

ν
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and plot a graph of the left hand side versus (ν − ν0)
2.  If the profile is truly gaussian, this 

will result in a straight line, from which w and d can be found from the slope and 

intercept. 

 

Integrating the Doppler profile to find the equivalent width is slightly less easy than 

integrating the Lorentz profile, but it is left as an exercise to show that 

 

   Equivalent width =   
16ln

π
× central depth × FWHm 

 

          =  1.064  × central depth × FWHm. 10.3.8 

 

Compare this with equation 10.2.23 for a Lorentz profile. 
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Figure X.3 shows a lorentzian profile (continuous) and a gaussian profile (dashed), each 

having the same central depth and the same FWHm.  The ratio of the lorenzian equivalent 

width to the gaussian equivalent width is .476.12ln
16ln2

=π=
π

÷
π

 

 

 

 

)(ννI  
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10.4    Microturbulence 

 

In the treatment of microturbulence in a stellar atmosphere, we can suppose that there are 

many small cells of gas moving in random directions with a maxwellian distribution of 

speeds.  The distinction between microturbulence and macroturbulence is that in 

microturbulence the size of the turbulent cells is very small compared with the optical 

depth, so that, in looking down through a stellar atmosphere we are seeing many cells of  

gas whose distribution of velocity components is gaussian.   In macroturbulence the size 

of the cells is not very small compared with the optical depth, so that , in peering through 

the haze of an atmosphere, we can see at most only a very few cells. 

 

If the distribution of velocity components of the microturbulent cells is supposed 

gaussian, then the line profiles will be just like that for thermal broadening, except that, 

instead of the modal speed Vm = mkT /2  of the atoms we substitute the modal speed ξm 

of the microturbulent cells.   Thus the line profile resulting from microturbulence is 

 

Frequency→ 

Iν(ν) 
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The FWHm in frequency units is 
c

16ln0mνξ
 or, in wavelength units, 

c

16ln0mλξ
.    

 

If the thermal and microturbulent broadening are comparable in size, we still get a 

gaussian profile, except that for Vm or ξm we must substitute ./2 2

m

2

m

2

m ξ+=ξ+ mkTV   

(This actually requires formal proof, and this will be given as an exercise in section 5.) 

 

Since either thermal broadening or microturbulence will result in a gaussian profile, one 

might think that it would not be possible to tell, from a spectrum exhibiting gaussian line 

profiles, whether the broadening was caused primarily by high temperature or by 

microturbulence.  But a little more thought will show that in principle it is possible to 

distinguish, and to determine separately the kinetic temperature and the modal 

microturbulent speed.  Think about it, and see if you can devise a way. 

 

 

 

 

 

 

 

 

 

************************************************************************ 

THINKING 
************************************************************************ 

 

 

The key is, in purely thermal broadening, the light atoms (such as lithium) move faster 

than the heavier atoms (such as cadmium), the speeds being inversely proportional to the 

square roots of their atomic masses.  Thus the lines of the light atoms will be broader than 

the lines of the heavy atoms.  In microturbulence all atoms move en masse at the same 

speed and are therefore equally broad.  We have seen, beneath equation 10.3.7, that the 
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FWHm, in frequency units, is ( ) 16ln/2 2

m
0 ξ+

ν
= mkT

c
w .  If we form the quantity 

16ln2

0

22

ν
=

cw
X  for a lithium line and for a cadmium line, we will obtain 
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2
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2 2

m
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2
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m

kT
X

m

kT
X    10.4.2 

 

from which T and ξm are immediately obtained. 

 

Problem.  A Li line at 670.79 nm has a gaussian FWHm = 9 pm (picometres) and a Cd 

line at 508.58 nm has a gaussian FWHm = 3 pm.  Calculate the kinetic temperature and 

the modal microturbulent speed.    

 

 

10.5   Combination of Profiles 

 

Several broadening factors may be simultaneously present in a line.  Two mechanisms 

may have similar profiles (e.g. thermal broadening and microturbulence) or they may 

have quite different profiles (e.g. thermal broadening and radiation damping).  We need 

to know the resulting profile when more than one broadening agent is present.)  Let us 

consider an emission line, and let x = λ − λ0.  Let us suppose that the lines are broadened, 

for example, by thermal broadening, the thermal broadening function being f(x).  

Suppose, however, that, in addition, the lines are also broadened by radiation damping, 

the radiation damping profile being g(x).  At a distance ξ from the line centre, the 

contribution to the line profile is the height of the function f(ξ) weighted by the function 

g(x − ξ).  That is to say the resulting profile h(x) is given by 

 

    ∫
∞

∞−
ξξ−ξ= .)()()( dxgfxh     10.5.1 

 

The reader should convince him- or herself that this is exactly the same as 

 

    ∫
∞

∞−
ξξξ−= .)()()( dgxfxh     10.5.2 

 

 

 

This profile is called the convolution of the two constituent profiles, and is often written 

symbolically 

 

       h  =  f & g .      10.5.3 

 

Let us consider, for example, the convolution of two gaussian functions, for example the 

convolution of thermal and microturbulent broadening.   
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Suppose one of the gaussian functions is 

 

             

  .
69315.0

exp
46972.02ln

exp
2ln.1

)(
2

1

2

1

2

1

2

1

1 







−=








−

π
=

g

x

gg

x

g
xG  10.5.4 

 

Here .0λ−λ=x  The area under the curve is unity,  the HWHM is g1 and the peak is 

.2ln1

1 πg
  (Verify these.)  Suppose that the second gaussian function is 
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It can now be shown, using equation 10.5.1 or 10.5.2, that the convolution of G1 and G2 

is 
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−

π
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xGxGxG    10.5.6 

        

where    .2

2

2

1

2 ggg +=      10.5.7 

 

We used this result already in section 10.4 when, in adding microturbulent to thermal 

broadening, we substituted 2

m

2

m ξ+V   for Vm.  In case you find the integration to be 

troublesome, I have done it in an Appendix to this Chapter. 

 

Now let’s consider the combination of two lorentzian functions.  Radiation damping 

gives rise to a lorentzian profile, and we shall see later that pressure broadening can also 

give rise to a lorentzian profile.  Let us suppose that the two lorentzian profiles are  
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1
1

1.)(
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l
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=      10.5.8 

 

and    
2

2

2

2
2

1.)(
lx

l
xL

+π
= .     10.5.9 

Here .0λ−λ=x  The area under the curve is unity, the HWHM is l1 and the peak is 

1/(πl).  (Verify these.)  It can be shown that 
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l
xLxLxL
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=∗=     10.5.10 
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where     l  =  l1  +  l2 .      10.5.11 

 

Details of the integration are in the Appendix to this Chapter. 

 

Let us now look at the convolution of a gaussian profile with a lorentzian profile;  that is, 

the convolution of 
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   10.5.12 

 

 

with    .1.)(
22
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l
xL

+π
=      10.5.13 

 

We can find the convolution from either equation 10.5.1 or from equation 10.5.2, and we 

obtain either 
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or   .
)(

]/)2ln(exp[2ln
)(

22
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3
ξ

+−ξ

ξ−

π
=

∞

−∞∫ d
lx

g

g

l
xV   10.5.15 

 

 

The expression 10.5.14 or 10.5.15, which is a convolution of a gaussian and a lorentzian 

profile, is called a Voigt profile.  (A rough attempt at pronunciation would be something 

like Focht.)   

 

A useful parameter to describe the “gaussness” or “lorentzness” of a Voigt profile might 

be 

 

     ,
G

lg

g
k

+
=      10.5.16 

 

which is 0 for a pure lorentz profile and 1 for a pure gaussian profile.  In figure X.4 I 

have drawn Voigt profiles for kG = 0.25, 0.5 and 0.75 (continuous, dashed and dotted, 

respectively).  The profiles are normalized so that all have the same area.  A nice exercise 

for those who are more patient and competent with computers than I am would be to 

draw 1001 Voigt profiles, with kG going from 0 to 1 in steps of  0.001, perhaps 

normalized all to the same height rather than the same area, and make a movie of a 

gaussian profile gradually morphing to a lorentzian profile.  Let me know if you succeed! 
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As for the gauss-gauss and lorentz-lorentz profiles, I have appended some details of the 

integration of the gauss-lorentz profile in the Appendix to this Chapter. 

 

 

The FWHM or FWHm in wavelength units of a gaussian profile (i.e. 2g) is  

 

  
( ) ( ) ./2665.116ln/2 0

2

m0
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2
1

2
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mkT
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mkT
w

λξ+
=
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=   10.5.17 

 

 

The FWHM or FWHm in frequency units of a lorentzian profile is  

 
    ,1592.0)2/(L Γ=πΓ=w     

10.5.18 

 

Here Γ is the sum of the radiation damping constant (see section 2) and the contribution 

from pressure broadening t/2  (see section 6).  For the FWHM or FWHm in wavelength 

units (i.e. 2l), we have to multiply by c/2

0λ . 
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Integrating a Voigt profile.    

 

The area under Voigt profile is ∫
∞

0
)(2 dxxV , where V(x) is given by equation 10.5.14, 

which itself had to be evaluated with a numerical integration.   Since the profile is 

symmetric about x = 0, we can integrate from 0 to ∞ and multiply by 2.  Even so, the 

double integral might seem like a formidable task.  Particularly troublesome would be to 

integrate a nearly lorentzian profile with extensive wings, because there would then be 

the problem of how far to go for an upper limit. However, it is not at all a formidable 

task.  The area under the curve given by equation 10.5.14 is unity!  This is easily seen 

from a physical example.  The profile given by equation 10.5.14 is the convolution of the 

lorentzian profile of equation 10.5.13 with the gaussian profile of equation 10.5.12, both 

of which were normalized to unit area.  Let us imagine that an emission line is broadened 

by radiation damping, so that its profile is lorentzian.  Now suppose that it is further 

broadened by thermal broadening (gaussian profile) to finish as a Voigt profile.  

(Alternatively, suppose that the line is scanned by a spectrophotometer with a gaussian 

sensitivity function.)  Clearly, as long as the line is always optically thin, the additional 

broadening does not affect the integrated intensity.   

 

Now we mentioned in sections 2 and 3 of this chapter that the equivalent width of  an 

absorption line can be calculated from c %  central depth % FWHm, and likewise the area 

of an emission line is c %  height % FWHM, where c is 1.064 ( = 16ln/π ) for a gaussian 

profile and 1.571  (= π/2) for a lorentzian profile.  We know that the integral of  V(x) is 

unity, and it is a fairly straightforward matter to calculate both the height and the FWHM 

of V(x).  From this, it becomes possible to calculate the constant c as a function of the 

gaussian fraction kG.  The result of doing this is shown in figure X.4A. 
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This curve can be fitted with the empirical equation 

 

    ,3

G3

2

G2G10 kakakaac +++=    10.5.19 

 

where a0  =  1.572,  a1  =  0.05288,   a2  =  −1.323  and a3  =  0.7658.  The error incurred 

in using this formula nowhere exceeds 0.5%; the mean error is 0.25%. 

 

 

The Voigt Profile in Terms of the Optical Thickness at the Line Center. 

 

Another way to write the Voigt profile that might be useful is  

 

 

         .]/2ln)(exp[
)0()(

22

22

ξ
+ξ

−ξ−
τ=τ

∞

∞

−∫ d
l

gx
Clx   10.5.20 

 

Here x =  λ  −  λ0 and ξ is a dummy variable, which disappears when the definite integral 

is performed.  The gaussian HWHM is ,/2lnm0 cg Vλ=  and the lorentzian HWHM is 

).4/(2

0 cl πΓλ=  The optical thickness at  λ  −  λ0  = x is τ(x), and the optical thickness at 

the line centre is τ(0).  C is a dimensionless coefficient, whose value depends on the 

gaussian fraction )./(G lggk +=   C is clearly given by 

 

   .1
]/2lnexp[

22

22

=ξ
+ξ

ξ−

∞

∞

−∫ d
l

g
Cl     10.5.21 

 

If we now let 2ln/'2ln/' gandgll ξ=ξ= , and also make use of the symmetry of 

the integrand about ξ  =  ξ'  =  0, this becomes 

 

       .1'

''

)'exp(
'2

22

2

0

=ξ
+ξ

ξ−
∞

∫ d
l

Cl     10.5.22 

 

On substitution of 
21

'2
'

t

tl

−
=ξ  (in order to make the limits finite), we obtain 

 

        ,1
1

])}1/('2{exp[
4

2

221

0

=
+

−−
∫ dt

t

ttl
C    10.5.23 

 

which can readily be numerically integrated for a given value of l'. Recall that 

1/1/ G −= kgl  and hence that .2ln)1/1(' G −= kl   The results of the integration are as 

follows.  The column Capprox is explained following  figure X.4B. 
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      kG         C            Capprox 

 

    0.05  8.942 417 9.325 6 

    0.10  4.264 473 4.288 9 

    0.15  2.719 106     2.716 4 

    0.20  1.957 257 1.956 6 

    0.25  1.508 719 1.511 1 

    0.30  1.216 486 1.219 6 

    0.35  1.013 114 1.015 3 

    0.40  0.864 815 0.865 5 

    0.45  0.752 806 0.751 9 

    0.50  0.665 831 0.663 9 

    0.55  0.596 758 0.594 3 

    0.60         0.540 859 0.538 6 

    0.65  0.494 893 0.493 4 

    0.70  0.456 569 0.456 2 

    0.75  0.424 227 0.425 1 

    0.80  0.396 642 0.398 5 

    0.85  0.372 889 0.375 3 

    0.90  0.352 263 0.354 2 

    0.95  0.334 214 0.334 5 

    1.00  0.318 310 0.315 3 

 

The last entry, the value of C for kG = 1, a pure gaussian profile, is 1/π.  These data are 

graphed in figure X.4B.   
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The empirical formula ,3

G3

2

G2G10Gapprox kckckccakC
b ++++= −    10.5.24 

 

where  a = +0.309 031     b = +1.132 747     c0 = +0.165 10 

           c1 = −0.829 99      c2 = +1.217 82      c3 = −0.546 65 

 

fits the curve tolerably well within (but not outside) the range kG = 0.15 to 1.00 . 

     

 

10.6     Pressure Broadening 

 

This is a fairly difficult subject, and I am no expert in it.  The reader will forgive me if I 

accordingly treat it rather briefly and descriptively. 

 

The phenomena of pressure broadening (also known as collisional broadening) are often 

divided into effects resulting from the short time interval between atomic collisions, and 

effects resulting at the moment of collision.  I shall begin by describing the first of these 

phenomena. 

 

The only possible absolutely monochromatic unbroadened infinitesimally narrow line 

with a single, uniquely defined frequency is a sine wave of infinite extent.  A sine wave 

of finite length is not a true sine wave of a single frequency, but it has a spread of 

component frequencies, which can be determined by Fourier analysis.  This, by the way, 

is the reason behind Heisenberg’s uncertainty principle (Unsicherheitsprinzip).  If the 

wavefunction that describes a particle is very limited in extent, then the position of the 

particle is relatively well determined.  On the other hand, the limited extent of the 

wavefunction means that it has a correspondingly broad Fourier spread of constituent 

wavelengths, and hence the momentum is correspondingly uncertain.  

 

The atmospheres of giant and supergiant stars are relatively thin; pressure broadening is 

slight and lines tend to be narrow.  In the atmospheres of main sequence stars, however, 

collisions between atoms are frequent.  The frequent occurrence of collisions interrupts 

the wave trains and divides them into short wave-packets, with a corresponding spread of 

component frequencies.  Thus the spectrum lines are broadened. 

 

The Fourier distribution of amplitudes of component frequencies of a sine wave that is 

truncated by a box function is the same as the Fourier distribution of amplitudes of a light 

wave that is diffracted by a single slit.  That is to say it is a sinc function of the form 

ν∆ν∆ /)(sin and the intensity distribution is the square of this.  The shorter the 

intercollision time, the wider the spread of constituent frequencies, just as a narrow slit 

produces a wide diffraction pattern.   Thus one might expect the profile of a pressure 

broadened line to resemble a single slit diffraction pattern, which, it will be recalled, 

looks like figure X.5. 
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The profile would indeed look like that if all intercollision times were exactly equal and 

all wave-train fragments were of exactly the same length.  There is, however, a Poisson 

distribution of intercollision times, and so the above profile has to be convolved with this 

Poisson distribution.  While I don’t do the calculation here, the resulting profile is a 

Lorentz profile except that the damping constant Γ is replaced by tt where,/2 is the 

mean time between collisions.  The mean time between collisions is given, from kinetic 

theory of gases, by 

 

    .
16

1
2

kT

m

nd
t

π
=       10.6.1 

 

Here m, d and n are, respectively, the masses, diameters and number density of the atoms. 

Hence, if the kinetic temperature is independently known, the number density of the 

particles can be determined from the FWHm of a pressure-broadened line. 

 

It will be recalled that classical radiation damping theory predicts the same FWHm for all 

lines, with a classical damping constant γ.  Quantum mechanical theory predicts a 

damping constant Γ and hence FWHm that differs from line to line.  Yet in the spectrum 

of a main sequence star, one quite often finds that all lines of a given element have the 

same FWHm and hence the same effective damping constant. This is because the width 

of a Lorentz profile is determined more by pressure broadening than by radiation 

damping. 
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There are further broadening effects caused by interactions that take place at the moment 

of collision.  If an atom is approached by an electron or an ion, it will temporarily be in 

an electric field, and consequently the lines will be broadened by Stark effect, which may 

be either linear (proportional to the electric field E) or quadratic (} E
2
), or neutral-neutral 

reactions give rise to interactions between temporarily induced dipole moments (van der 

Waals forces), and these all have different dependences on interatomic distance.  Neutral 

magnesium is very sensitive to quadratic Stark effect, and hydrogen is sensitive to linear 

Stark effect.  The entire subject is quite difficult, and I leave it here except to point out 

two small details.  Very often the broadening is not symmetric, lines typically having 

wider wings to the long wavelength side than on the short wavelength side.  This is 

because the effect of the interactions is to lower and broaden the energy levels of a 

transition, the lower energy level generally being lowered more than the upper.  A second 

point is that the hydrogen Balmer lines are often much broadened by linear Stark effect, 

and this can be recognized because the Stark pattern for the Balmer series is such that 

there are no undisplaced Stark components for even members of the series – Hβ, Hδ, Hζ, 

etc.   Thus results in a central dip to these lines in an emission spectrum or a central bump 

in an absorption line. 

 

 

 

10.7   Rotational Broadening 

 

The lines in the spectrum of a rotating star are broadened because light from the receding 

limb is redshifted and light from the approaching limb is blueshifted.  (I shall stick to 

astronomical custom and refer to a “redshift” as a shift towards a longer wavelength, 

even though for an infrared line a “redshift” in this sense would be a shift away from the 

red!  A “longward” shift doesn’t quite solve the problem either, for the following reason.  

While it is true that relativity makes no distinction between a moving source and a 

moving observer, in the case of the Doppler effect in the context of sound in air, if the 

observer is moving, there may be a change in the pitch of the perceived sound, but there 

is no change in wavelength!)  It may be remarked that early-type stars (type F and earlier) 

tend to be much faster rotators than later-type stars, and consequently early-type stars 

show more rotational broadening.  It should also be remarked that pole-on rotators do not, 

of course, show rotational broadening (even early-type fast rotators). 

 

We shall start by considering a star whose axis of rotation is in the plane of the sky, and 

which is of uniform radiance across its surface.  We shall then move on to oblique 

rotators, and then to limb-darkened stars.  A further complication that could be 

considered would be non-uniform rotation.  Thus, the Sun does not rotate as a solid body, 

but the angular speed at low latitudes is faster than at higher latitudes – the so-called 

“equatorial acceleration”. 

 

In figure X.6, on the left hand we see the disc of a star as seen on the sky by an observer.  

PQ is the axis of rotation, supposed to be in the plane of the sky,  and AB is the equator.  

X is a point on the surface of the star at coordinates (x, y), latitude θ.   The star is 

supposed to be rotating with an equatorial speed ve.  What we are going to show is that 
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all points on the chord LMN have the same radial velocity away from or towards the 

observer, and consequently all light from points on this chord has the same Doppler shift. 

 

The right hand part of the figure shows the star seen from above the pole P.  The small 

circle is the parallel of latitude CD shown on the left hand part of the figure. 

 

M is a point on the equator and also on the chord LMN.  Its speed is ve and the daial 

component of its velocity is ve sin α.   The speed of the point M is ve cos θ, and its radial 

velocity is ve cos θ sin OPX.   But x  = PM sin α =  a sin α   and  x  =  PX sin OPX  

= a cos θ sin OPX.   Therefore cos θ sin OPX  = sin α.  Therefore the radial velocity of X 

is ve sin α, which is the same as that of M, and therefore all points on the chord LMN 

have radial velocity ve sin α  =   vex/a.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore all points on the chord x = constant are subject to the same Doppler shift 

 

    
ac

xev=
λ

λ∆
.      10.7.1 

 

The ordinate of an emission line profile at Doppler shift ∆λ compared with its ordinate at 

the line centre is equal to the ratio of the length of the chord x = constant to the diameter 

2a of the stellar disk: 
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In the above, we have assumed that the axis of rotation is in the plane of the sky, or that 

the inclination i of the equator to the plane of the sky is 90
o
.  If the inclination is not 90

o
, 

the only effect is that all radial velocities are reduced by a factor of sin i, so that equation 

10.7.2 becomes 
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and this is the line profile.  It is an ellipse, and if we write  
( )

X
I

I
=

λ∆

λ

λ

)0(
 and Y=

λ

λ∆
  

 

equation 10.7.3 can be written 
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The basal width of the line (which has no asymptotic wings) is 
c

isin2 ev  and the FWHM 

is .sin3 e

c

iv
  The profile of an absorption line of central depth d is 
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It is left as an exercise to show that 

 

Equivalent width   =   ×
π

12
  central depth  ×   FWHm   =   0.9069 dw.  10.7.6 

From the width of a rotationally broadened line we can determine  ve sin i, but we cannot 

determine ve and i separately without additional information.  Likewise, we cannot 

determine the angular speed of rotation unless we know the radius independently. 

 

It might be noted that, for a rotating planet, visible only by reflected light, the Doppler 

effect is doubled by reflection, so the basal width of a rotationally broadened line is 

c

isin4 ev . 
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Now let us examine the effect of limb darkening.  I am going to use the words intensity 

and radiance in their strictly correct senses as described in Chapter 1, and the symbols I  

and L respectively.  That is, radiance = intensity per unit projected area.  For spectral 

intensity and spectral radiance – i.e. intensity and radiance per unit wavelength interval, I 

shall use a subscript λ.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We suppose that the spectral radiance at a distance r from the centre of the disc is Lλ(r).  

The intensity from an elemental area dA on the disc is dIλ  =  Lλ(r)dA.  The area between 

the vertical strip and the annulus in figure X.7 is a little parallelogram of length dy and 

width dx, so that dA  =  dxdy.  Here y
2
  =  r

2
  −  x

2
, so that .

22
xr

rdr

y

rdr
dy

−
==   

 

Therefore  .
22

xr

rdrdx
dA

−
=   The total intensity from the strip of width dx, which is 

dIλ(∆λ), where 
ac

ix sinev=
λ

λ∆
, is 

 

Lλ(r) 

dIλ = Lλ(r)dA 

FIGURE X.7 
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The (emission) line profile is  
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which is the line profile.  As an exercise, see if you can find an expression for the line 

profile if the limb=darkening is given by )],cos1(1)[0( θ−−=θ uLL  and show that if the 

limb-darkening coefficient u = 1, the profile is parabolic. 

 

Equation 10.7.8 enables you to calculate the line profile, given the limb darkening.  The 

more practical, but more difficult, problem, is to invert the equation and, from the 

observed line profile, find the limb darkening.  Examples of this integral, and its 

inversion by solution of an integral equation, are given by Tatum and Jaworski,  J. Quant. 

Spectr. Rad. Transfer, 38, 319, (1987). 

 

Further pursuit of this problem would be to calculate the line profile of a uniform star that 

is rotating faster at the equator than at the poles, and then for a star that is both limb-

darkened and equatorially accelerated – and then see if it is possible to invert the problem 

uniquely and determine both the limb darkening and the equatorial acceleration from the 

line profile.  That would be quite a challenge. 

 

 

10.8      Instrumental Broadening 

 

Even if the radiation damping profile of a line is negligible and if it is subject to 

negligible thermal, pressure and rotational broadening, it still has to suffer the indignity 

of instrumental broadening.  Almost any type of spectrograph will broaden a line.  The 

broadening produced by a prism is inversely proportional to the size of the prism, and the 

broadening produced by a grating is inversely proportional to the number of grooves in 

the grating.  After a spectrum is produced (and broadened) by a spectrograph, it may be 

scanned by a further instrument such as a microphotometer, or even if it is recorded 

digitally, it is still further broadened by the point spread function.  The instrumental 

broadening can in principle be determined experimentally by measuring the 

instrumentally-produced profile of an intrinsically very narrow line.  Then, when the 

instrument is used to examine a broad line, the observed profile is the convolution of the 

true profile and the instrumental profile.  We can write this symbolically as  

 

    O  =  T  &  I .        10.8.1 
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Here O, T and I are respectively the observed, true and instrumental profiles, and the 

asterisk denotes the convolution.  The mathematical problem is to deconvolve this 

equation so that, given the instrumental profile and the observed profile it is possible to 

recover the true profile.  This is done by making use of a mathematical theorem known as 

Borel’s theorem, which is that the Fourier transform of the convolution of two functions 

is equal to the product of the Fourier transforms of each.  That is 

 

    ,ITO ×=        10.8.2 

 

where the bar denotes the Fourier transform.  Numerical fast Fourier transform computer 

programs are now readily available, so the procedure is to calculate the Fourier 

transforms of the observed and instrumental profile, divide the former by the latter to 

obtain T  , and then calculate the inverse Fourier transform to obtain the true profile.  

This procedure is well known in radio astronomy, in which the observed map of a sky 

region is the convolution of the true map with the beam of the radio telescope, though, 

unlike the one-dimensional spectroscopic problem the corresponding radio astronomy 

problem is two-dimensional. 

 

 

 

10.9   Other Line-broadening mechanisms 

 

I just briefly mention here one or two additional sources of line-broadening.    

  

Lines may be broadened by unresolved or smeared Zeeman splitting, particularly for 

lines involving levels with large Landé g-factors.  By “smeared” I mean the situation that 

arises if there is a large range of magnetic field strength through the line of sight or 

because (as is always the case with stars other than the Sun) you are looking at a whole-

disc spectrum.  Since the splitting depends on the field strength, the lines will obviously 

be smeared rather than cleanly divided into a number of discrete Zeeman components.  

Zeeman smearing is often large in the spectrum of white dwarf stars, where magnetic 

fields can be large and the observer looks through a large range of magnetic field 

strength. 

 

Different Zeeman components are plane or circularly polarized according to the direction 

of the magnetic field.  Thus in principle one should be able to recognize Zeeman effect, 

even if smeared or not fully resolved, by its changing appearance in different polarization 

directions.  However, this will be true only if the magnetic field is uniform in direction, 

as it may mostly be in, for example, a sunspot.  For a whole-disc spectrum there will be a 

variety of different directions of the magnetic field, and so the polarization information 

will be lost.  

 

Broad lines are sometimes the result of unresolved hyperfine structure in elements with a 

large nuclear spin such as vanadium, or unresolved isotopic lines in elements with several 

isotopes of comparable abundance such as tin, copper or chlorine. 
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Another source of line broadening is autoionization (in absorption spectra) or dielectronic 

recombination (in emission spectra) in elements such as copper.  These mechanisms were 

described in section 8.8. 

 

One last remark might be made, namely that line broadening, whether instrumental, 

thermal, rotational, etc., does not change the equivalent width of a line, provided that the 

line is everywhere optically thin.  This does not apply, however, if the line is not 

everywhere optically thin. 

   

 

 

 

APPENDIX A 

Convolution of Gaussian and Lorentzian Functions 

 

Equation 10.5.6 is 
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The integration is straightforward, if taken slowly and carefully, provided you know the 

integral .)exp( 2

∫
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where     .)](exp[ 2BCaK −−=  

 

We have now completed the integration, except that we now have to remember what a, C 

and B were.  When we do this, after a bit more careful algebra we arrive at the result 
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In a similar manner, equation 10.5.10 is 
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Resolve the integrand into partial fractions:  
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Evaluation of the constants is straightforward, if slightly tedious, by the usual method of 

partial fractions: 
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From symmetry considerations, this is: 
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We have now completed the integration, except that we now have to remember what B 

and D were.  When we do this, after a bit more careful algebra we arrive at the result 
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where    l  =  l1  +  l2 . 

 

 

___________________________________ 

 

 

The Voigt profile is given by equation 10.5.14: 
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For short, I am going to write the ratio l/g as a.  The relation between this ratio and the 

gaussian fraction kG is a = (1 − kG)/ kG ,  kG =  1/(1 + a).  In the above equation, x = 

λ − λ0, and I am going to choose a wavelength scale such that g = 1; in other words 

wavelength interval is to be expressed in units of g.  Thus I shall write the equation as  
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The integration has to be done numerically, and there is a problem in that the limits are 

infinite.  We can deal with this with the change of variable ξ  =  a tan θ, when the integral 

becomes 
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The limits are now finite, and the integrand is zero at each limit. Computing time will be 

much diminished by the further substitution ,tan
2
1 θ=t  when the expression becomes 
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This is faster than the previous expression because one avoids having to compute the 

trigonometric function tan. It could also have been arrived at in one step by means of the 

substitution ,
1

2
2

t

at

−
=ξ though such a substitution may not have been immediately 

obvious.  Like the previous expression, the limits are finite, and the integrand is zero at 

each end.  Numerical integration would now seem to be straightforward, although there 

may yet be some difficulty.  Suppose one is integrating, for example, by Simpson’s 

method.  A question might arise as to how many intervals should be used.  Simpson’s 

method is often very effective with a remarkably small number of intervals, but, for high 

precision, one may nevertheless wish to use a fine interval.  If one uses a fine interval, 

however, as one approaches either limit, the expression  t/(1 − t
2
) becomes very large, 

and, even though the integrand then becomes small, a computer may be reluctant to 

return a value for the exp function, and it may deliver an error message.  The best way to 

deal with that difficulty is to set the integrand equal to zero whenever the absolute value 

of the argument of the exp function exceeds some value below which the computer is 

happy. 

 

One might be tempted to reduce the amount of computation by saying that ,2
1

0

1

1 ∫∫ =
−

but 

this is not correct, for, while the Voigt profile is symmetric about x = 1, the integrand is 

not symmetric about t = 0. However, if  
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it is true that ,)()(and)()()( 2121 xVxVxVxVxV −=+=  and hence that 

,)()()( 11 xVxVxV −+=  and this can be used to economise to a small extent.  It is still 

necessary to calculate V1(x) for all values of x, both positive and negative, but the number 

of integration steps for each point can be halved. 

 

 

 

APPENDIX B 

Radiation Damping as Functions of Angular Frequency, Frequency and Wavelength 

 

It occurred to me while preparing this Chapter as well as the preceding and following 

ones, that sometimes I have been using angular frequency as argument, sometimes 

frequency, and sometimes wavelength.  In this Appendix, I bring together the salient 

formulas for radiation damping in terms of ∆ω  =  ω − ω0,  ∆ν = ν − ν0 and ∆λ = λ − λ0.  I 

reproduce equation 10.2.11 for the absorption coefficient for a set of forced, damped 

oscillators, except that I replace n, the number per unit volume of oscillators with n1f12, 

the effective number of atoms per unit volume in the lower level of a line, and I replace 

the classical damping constant γ with Γ, which may include a pressure broadening 

component. 
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You should check that the dimensions of this expression are L
−1

, which is appropriate for 

linear absorption coefficient.  You may note that [e
2
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3
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.  Indeed 

check the dimensions of all expressions that follow, at each stage. 
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Now I think it will be owned that the width of a spectrum line is very, very much smaller 

than its actual wavelength, except perhaps for extremely Stark-broadened hydrogen lines, 

so that, in the immediate vicinity of a line, ∆ω can be neglected compared with ω0; and a 

very long way from the line, where this might not be so, the expression is close to zero 

anyway. (Note that you can neglect ∆ω only with respect to ω; you cannot just put 

∆ω = 0 where it lies alone in the denominator!) In any case, I have no compunction at all 

in making the approximation 
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The maximum of the α(∆ω) curve is           
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The optical thickness at the line centre (whether or not the line is optically thin) is 
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N1 is the number of atoms in level 1 per unit area in the line of sight, whereas n1 is the 

number per unit volume.    

 

The HWHM of α(∆ω) curve is           
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As expected, the area does not depend upon Γ. 

 

 

To express the absorption coefficient as a function of frequency, we note that ω =  2πν, 

and we obtain 

     

   
])()[(16

)(
2

4

2

0

2

2

121

π
Γ+ν∆επ

Γ
=ν∆α

cm

efn
 m

−1
.  10.B.8 

 

The maximum of this is (of course) the same as equation 10.B.4. 

  

The HWHM of the α(∆ν) curve is           
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The area under the α(∆ν) curve is      
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To express the absorption coefficient as a function of wavelength, we can start from 

equation 10.B.8 and use ν = c/λ, but, just to avoid any possible doubt, let’s start from 

equation 10.B.1 and put ω = 2πc/λ.  This gives 
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In a manner similar to our procedure following equation 10.B.12, we write 

( )( ) ,and, 000

22

0 λ∆+λ=λλ+λλ−λ=λ−λ  and neglect ∆λ with respect to λ0, and we 

obtain: 
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The maximum of this is (of course) the same as equation 10.B.4.  (Verifying this will 

serve as a check on the algebra.) 

 

The HWHM of the α(∆λ) curve is           
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The area under the α(∆λ) curve is           
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Did I forget to write down the units after this equation? 

 

 

These results for α might be useful in tabular form.  For τ, replace n1 by N1. 
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It is to be noted that if the radiation damping profile is thermally broadened, the height of 

the absorption coefficient curve diminishes, while the area is unaltered provided that the 

line is optically thin.  The optically thick situation is dealt with in the following chapter.  

It might also be useful to note that a gaussian profile of the form  
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APPENDIX C 

Optical Thinness, Homogeneity and Thermodynamic Equilibrium 

 

It has also occurred to me while preparing these chapters that some of the equations are 

valid only under certain conditions, such as that the gas is optically thin, or is 

homogeneous or is in thermodynamic equilibrium, or some combination of these, or none 

of them.  It would be tedious to spell out all of the conditions after each equation.  Yet it 

is important to know under what conditions each is valid.  In this Appendix I try to give 

some guidance.  For example, most of the equations in this Chapter deal with line profiles 

in an optically thin gas, whereas in the next Chapter the gas is no longer optically thin.  In 

the end, however, the only way of being sure of what conditions apply to each equation is 

to understand the basic physics behind each rather than attempting to memorize which 

conditions apply to which equations. 

 

The linear absorption coefficient α at a point within a gas is proportional to the local 

number density n1 of absorbers.  (The subscript 1 refers to “atoms in the lower level of 

the line concerned”.)The optical thickness of a slab of gas of thickness D is related to the 

absorption coefficient (which may or may not vary throughout the slab) by 

∫ α=τ
D

dxx
0

)( .   This is so whether or not the gas is optically thin or whether it is 
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homogeneous.  Likewise, the column density N1 of absorbers is related to the number 

density by ∫= D dxxn0 11 )(N .  If the gas is homogeneous in the sense that n1 is not a 

function of x, and consequently α is not a function of x either, then these equations 

become simply τ = αD  and N1 = n1D, and this is so whether or not the gas is optically 

thin. 

 

Whether optically thin or thick, and whether homogeneous or not, the optical thickness is 

proportional to the column density N, just as the absorption coefficient is proportional to 

n1. 

 

If a layer of gas of thickness D is not homogeneous, the optical thickness is related to the 

absorption coefficient and the thickness of the gas by ∫ α=τ
D

dxx
0

)( .  If the gas is 

homogeneous so that α is independent of x, then the relation is merely τ  =  αD.  Neither 

of these equations requires the gas to be optically thin.  That is, they are valid whether the 

gas is optically thin or thick.  The absorption coefficient at a point within the gas is 

proportional to the local density (number of absorbers per unit volume there.)  The 

optical thickness is proportional to the column density of absorbers along the line of 

sight, whether or not the gas is optically thin and whether or not it is homogeneous. 

  

 

However, the equivalent width and central depth of an absorption line, or the intensity or 

radiance, or central intensity or radiance per unit wavelength interval of an emission 

line, are proportional to the column density of atoms only if the gas is optically thin.  

Indeed this simple proportionality can serve as a good definition of what is meant by 

being optically thin. 

 

The equivalent width of an absorption line is given by ∫ λλτ−−= .)}](exp{1[ dW  If the 

gas is homogeneous, this becomes ∫ λλα−−= .)}](exp{1[ dDW  If, in addition, the gas 

is optically thin at all wavelengths within the line, this becomes (by Maclaurin 

expansion), merely ∫ λλα= .)( dDW   Note that, if λ and D are expressed in m and if  α 

is expressed in m
−1

, the equivalent width will be in m.  If, however, you choose to express 

wavelengths in angstroms and the thickness of a cloud in parsecs, that is your problem, 

and you are on your own. 

 

 

Any equations in which we have gone from n, the total number of atoms per unit volume 

in all levels to n1 via Boltzmann’s equation, implies an assumption of thermodynamic 

equilibrium.  An example would be going from equation 9.2.4 (which does not imply 

thermodynamic equilibrium) to equations 9.2.6-10 (which do imply thermodynamic 

equilibrium).  If a gas is truly in thermodynamic equilibrium, this implies that the gas will 

be at a single, homogenous temperature – otherwise there will be heat flow and no 

equilibrium.  It is doubtful if anything in the Universe is truly in thermodynamical 

equilibrium in the very strictest use of the term.  However, even in an atmosphere in 
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which the temperature is different from point to point, we may still have local 

thermodynamic equilibrium (LTE), in the sense that, at any point, it is all right to 

calculate the distribution of atoms among their energy levels by Boltzmann’s equation, or 

the degree of ionization by Saha’s equation, or the atomic speeds by the Maxwell-

Boltzmann equation, or the radiation energy density by Planck’s equation – and you may 

even be able to use the same temperature for each.  This may be all right within a small 

volume of an atmosphere; only when considered over large ranges of space and time will 

it be evident that the atmosphere is not in true thermodynamic equilibrium. 


