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CHAPTER 7  

General Quadratic Equation, Part II  

0Δ3  : Noncentral Surfaces 

Paraboloids 

 

7.1  An Elliptic Paraboloid 

 

   Chapter 6 dealt with equations of the form  

 

              0222222222  dwzyvuxhxygzxfyzczbyax                    7.1.1 

 

that could be factorized into two real linear factors, and therefore represented two planes. 

But consider equation 7.1.1 with 

 

                   
6459

83427/79713





dwvu

hgfcba
               7.1.2 

 

You will find that 3 = 0, so it does not represent a central quadric surface, so it is either 

two planes or a paraboloid. But try as you will, you will not be able to split this into two 

real linear factors.  It must be a paraboloid.   [I apologize for the fractional value for c.  I 

chose the other coefficients quite arbitrarily as simple integers.   However, to ensure that 

the surface is not a central surface, I was constrained by the requirement that 3 = 0, 

which then determined the value of c.] 

 

We’ll note in passing, for future reference, that Tr 3  =        ̅̅ ̅̅ ̅      [Tr 3  means the 

trace of  3 , or the sum of its diagonal elements, .cba   ] 

 

The surface represented by equation 7.1.1 intersects the coordinate axes where: 

 

x-axis:       aduduxax  22 02        Two real points                         7.1.3 

y-axis:       bdvdvyby  22 02         No real points                           7.1.4              

z-axis:       cdwdwzcz  22 02         No real points               7.1.5 

 

It intersects the coordinate planes where: 

 

yz-plane:    bcfdwzyvczfyzby  222 0222      Ellipse               7.1.6 

zx-plane:    cagduxwzaxgzxcz  222 0222      Ellipse               7.1.7                                    

xy-plane:    abhdvyuxbyhxyax  222 0222      Ellipse               7.1.8   

                      

It is evident by now that we must be dealing with an elliptic paraboloid. 

 

   In this Chapter, we shall often be rotating or translating the axes of coordinates, so, in 

order to distinguish between the various coordinate systems, I am going to use different 
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fonts for the different systems.  Thus, in my computer, equation 7.1.1 is set in Times New 
Roman Italic, whereas equation 7.1.9 below is set in Franklin Gothic  Book Bold Italic. 

 

 

 

       In Chapter 1, we discussed the rotation of coordinate systems.  I reproduce figure I.5 

here: 

 

                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have a black coordinate system xyz, set in Times New Roman italic (and referred to as 
the “Roman” coordinate system), and a blue system xyz, set in Franklin Gothic Book 

italic boldface, and referred to as the “Franklin” system.  I take the direction cosines of 

the x, y, z axes (relative to the xyz system) to be, respectively 

),,,(),,,(),,,(
333222111

nmlnmlnml and the spherical coordinates of the z axis to be 

).,(   

 

   A point in space can be represented by its Roman coordinates ),,( zyx  or by its 

Franklin coordinates (x, y, z), and it was shown in Chapter 1 that these coordinates are 

related through: 
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FIGURE I.5 
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   For example, if we have a quadric surface represented in Roman coordinates by 

 

            0222222222  dwzyvuxhxygzxfyzczbyax ,                     7.1.1 

 

when referred to Franklin coordinates, it becomes 

 

              0222222222  dwzyuxhxygzxfyzczbyax v                    7.1.9 

 

in which    
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7.1.10a - j 

    Now, according to equation 4.1.7 of Chapter 4, an equation of the form 

 

0 d2wz2vy2uxby2hxyax
22

      which was 4.1.7, is now      7.1.11 

 
(with no terms in z2, yz or zx) represents a paraboloid in which the z axis is parallel to the 

symmetry axis of the paraboloid.  We are going to try rotating the axes of coordinates in 

such a manner that equation 7.1.1 takes the form of 7.1.11. We want to choose  and  so 
that f = g = c = 0. In order not to interrupt the flow of thought, I give the solutions here 

for our numerical example: 

 

48º.091 694 731 9       =  68º.552 263 672 9 
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(The method of solution to arrive at these angles is given in the Appendix to this 

Chapter.) 

 

These angles give the orientation of the symmetry axis of the paraboloid referred to the 

original xyz coordinate system. 

 

There is another solution, namely 

   

  = 131o.908 503 268 1     =  355o.552 263 672 9 

 

This is merely the same orientation, in the diametrically opposite direction. 

 

   Having determined  and we can now (by using equations 1.2.13 and 7.1.10 

calculate all the constants in equation 7.1.9.  These are: 

    
                         a                                    b                                     c 

                         f                                     g                                     h 

                         u                                    v                                     w 

                         d 
 

     17.643093922652      5.282832003274      0.000000000000 

      0.000000000000      0.000000000000     -5.717253072310 

     10.205025303078      2.066532181884     -3.686041685165 

      6.000000000000 

 

 

Thus we have found a set of coordinate axes such that the equation to the paraboloid is of 

the form of equation 7.1.11 which, we have noted, is a paraboloid with its symmetry axis 
parallel to the z-axis of the coordinate system. 

 

      We note with satisfaction that a + b + c  =  a  +  b  +  c =        ̅̅ ̅̅ ̅   (the trace of a 

matrix is unaltered by an orthogonal transformation)  and also that 3 = 0 (the surface is 

still a paraboloid). 

 

  Those who are familiar with the conic sections are now on familiar ground.  They will 
note that for any constant z, equation 7.1.11 is the equation to a conic section.  They will 

also note that h2
 < ab, so that the cross-section of the paraboloid at any constant z is an 

ellipse. 

 
  The next step is to rotate the coordinate system so as to get rid of the term in xy, so that 

the axes of the elliptical cross-section are parallel to the axes of a new coordinate system. 

We choose a new coordinate system xyz (Bookman Old Style Italic on my 

computer) such that the new x-axis makes an angle  with the x axis: 
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FIGURE VII.2 

 

 

 

 

 

 

 

 

so that        




cossin

sincos

yx

yx

y

x
     7.1.12 

 

 

On substituting these into equation 7.1.11, we find that the equation to the paraboloid 

now becomes 

 

                    ,02222 22  dwzvyuxbyhxyax                              7.1.13 

 

where 

 

                              a  =  a cos
2
  +  b sin

2
   +  2h sincos

b  =  a sin
2
  +  b cos

2
    2h sincos

  h  = a sincos  +  b sincos  +  h cos
2
    h sin

2
 

  u   =  u cos  +  v sin

  v   =  u sin  +  v cos

  ww

dd .                                                                                          7.1.14

 

We choose so that h =  0.  The coefficient h can be written conveniently as   

 

 2cos2sin)(
2

1 habh     7.1.15 

 

so we choose so that          
ba

h




2
2tan .                                                          7.1.16 

 

x 

y 
y 

x 

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In our particular example,       = 0.925102252622.   This gives four solutions 

between 0 and 360 degrees, at right angles to each other, namely  

 

 =   68o.614008767109,  158o.614008767109, 
   248o.614008767109, 338o.614008767109. 

 

These are the directions (referred to the xyz system) of the x and y 

axes.  I shall choose the first of these solutions to be the direction of the positive x axis, 

 

   

 We can now calculate, using equations 7.1.14, the constants abhuvwd.   

 
                     a                               b                               h 
                     u                                v                               w 
                     d   
 
      3.043877420474     19.882048505452     17.974267952307 

      5.645494718445     -8.748799122121     -3.686041685165 

      6.000000000000 

 

and the equation to the surface is now 

 

.022222  dwzvyuxbyax                            7.1.17 

 

We note with satisfaction that the trace  (a  +  b) is unaltered. 

 

Now let                                                                                       7.1.18    
 

so that the equation now becomes 

 

                                                                                               7.1.19 
 

in which      

    

                        

             

                     

              
 
      

              

                 
         

 
                                             

           7.1.20 

 
[I have used Lucida Bright italic bold font for the new coordinate system.] 
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We choose  
000

,, zyx  so that u, v, d  are all zero.  That is 

 

w

dvyuxbyax
z

b

v
y

a

u
x

2

)22(
00

2

0

2

0

000


              7.1.21 

 
In our example, these are: 

 

                         x0                                                       y0                                                         z0 

 

       -1.854705015541      0.440035095967     -1.128650560885 

 

 

and the equation to the surface is now 

 

                                                                                                                 7.1.22 

 

with 

                            a                                b                                   w     
            
       3.043877420474     19.882048505452     -3.686041685165 

 

This can be written in standard form as 

 

 

           
hba
zyx 2

2

2

2

2

                                                           7.1.23 

with 

 

                          a                                   b                                        h 
 
       0.573173918874      0.224269097566     0.271293730623 

 
[I have used Harrington Italic font for the new constants.] 

 

The cross-section of the surface in any plane perpendicular to the z axis is an ellipse of 

eccentricity  √               √           =   0.920273453562 . 
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7.2  A HyperbolicParaboloid 

 

  Consider 

 

0341262024321549 222  zyxxyzxyzzyx              7.2.1 

 

3263

1012161549





dwvu

hgfcba
     7.2.2 

 

3 = 0, so it is not a central quadric. 

 

It intersects the coordinate axes where: 

 

x-axis:       aduduxax  22 02         No real points 

y-axis:       bdvdvyby  22 02         Two real points                           7.2.3              

z-axis:       cdwdwzcz  22 02        No real points 

 

Two planes cannot behave like this. 

 

It intersects the coordinate planes where: 

 

yz-plane:    0222 22  dwzyvczfyzby        

zx-plane:    0222 22  duxwzaxgzxcz                                                     7.2.4      

xy-plane:    0222 22  dvyuxbyhxyax         

 

These are all conic sections, and lovers of the conic sections will note that 

abhcagbcf  222 ,, , so that each of these sections is a hyperbola.  We are 

evidently dealing with a hyperbolic paraboloid.  

 

Suppose that the spherical coordinates of the symmetry axis of the paraboloid are ),( 

referred to the xyz coordinate axes.  Now, following the methods described in Section 7.1 
for the elliptical case and the Appendix to this Chapter, we have to transform to an xyz 

coordinate system, such that the symmetry axis of the paraboloid is parallel to the z 

coordinate axis, and so determine ),(  . 

 

We start by drawing graphs of f(,  g(andc(to see for what values of and are 

these three functions equal.  The graphs are shown below, with f, g, c  in black, blue and 

red respectively. 
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  We see that there is a solution near   =  60º.8 ,    =  12º.1, and we leave it to the 

reader, using one or both of the methods described in the Appendix, to refine this to  

 

  =  60º.8059760832 ,    =  12º.0947570770 

 

As explained in the Appendix as well as in Section 7.1 of the Chapter, there will be two 

solutions, namely ),(   and )180,180( oo  . 

 
Make the transform to Franklin coordinates, in which the z axis is parallel with the 

symmetry axis of the paraboloid.  I make it 

 

02222  dwzvyuxbyhxyax
22      7.2.5 

 

with   
           a                                        b                                     h 

                          u                                        v                                     w 

       
 

       19.682926829273      8.317073170727    -20.801546640890      

        0.642167469770      6.621119183913     -2.951000001109 

        3.000000000000 
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In any plane z = constant, this is a hyperbola. The trace is 28 in both the original Roman 

and the new Franklin coordinates.  

 

   To move to Bookman coordinates (in which the x and y axes are parallel to the 

principal axes of the hyperbolic cross-section of the paraboloid)), we must rotate the axes 

through , such that 
ba

h




2
2tan .   The four principal solutions  are 

 

 =   52o.640091510845,  142o.640091510845, 
   232o.640091510845, 322o.640091510845. 

 

I choose   =  232o.640091510845 for the positive x axis.  (I first chose 52, but I 

changed my mind – as you probably will – as soon as I had calculated the Bookman 

coefficients.) 
 

I find that                .022222  dwzvyuxbyax                                 7.2.6 

with       

              a                             b                                d 
                       u                             v                                w 
 
      35.563858652848     -7.563858652848     3.000000000000 

       3.203663450766     -5.726131774932    -2.438843043399 

 

        

This is a hyperbola, and the trace, a + b, is still 28.  

 

  Next we need to find  x0    y0     z0  such that, in Lucida Bright coordinates (see Setion 

7.1)  there are no terms in x  y  z.   I obtain 

 

                    x0                                                        y0                                                        z0   

       -0.090081998189     -0.757038442644     1.444600851861 

 

and hence      ax2
  +  by2

   +2wz  =  0                                             7.2.7 

 

where 

                            a                                  b                                  w 
 
       35.563858652848     -7.563858652848     -2.438843043399 

 
and hence 

   

                                               
hba
zyx 2

2

2

2

2

                                                          7.2.8 

with 
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                            a                                   b                                   h 
        0.363603703205    0.167685520107     0.338868180151 
 

The cross-section of the surface in any plane perpendicular to the z axis is a hyperbola of 

eccentricity  22 /1 ab =   1.101219259592. 

 

 

 

 

 

  
Appendix 7A 

 

How to solve the equations f = g = c = 0 for  and .   

 

 

We have to solve the equations f = g = c = 0 for  and .  These three equations are not 

independent;  we can solve two of them, and then use the third as an additional check.  I 
choose to solve f =  0  and  g = 0. 

 

After some algebra and trigonometric manipulations, these equations can be written as 

 
f  = 0: 

  

       





2sinsincos

)cossin(2
2tan

22 hcba

gf
            7.A.1                                   

g  = 0: 

 






2cos2sin)(

sincos
tan

2
1 hba

gf
              7.A.2 

 

 

For the elliptical paraboloid in our example in Chapter 7,  numerical values of the 

coefficients abcfgh are given in equation 7.1.2.  Here they are again:                                                                                                                

 

6459

83427/79713





dwvu

hgfcba
                               7.1.2 

 

 

   We are looking for solutions in the range 0 to 180 degrees,   = 0 to 360 degrees.  

Recall also that we are looking for a ),(  that is going to represent the orientation of the 

symmetry axis of the paraboloid.  There will be two solutions for ),(  in diametrically 

opposite directions.  That is, if one solution is ),(  , there will be another solution 

)180,180( oo  in the opposite direction.   (Signs sic.) 
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  I suggest two methods of solving them.  The calculation may look formidable, but, once 

the necessary equations have been developed, they are straightforward to program into a 

computer, and the numerical calculation by computer is instantaneous. 

 

  In both methods we must start with a guess at the solutions.  How may we make such a 

guess?   One way is to draw graphs of   :  from equations 7.A.1 and 7.A.2  (i.e.  

0and0  gf ) and see where they cross (i.e. where they both have the same values 

of ),(  .  Here they are - 0f  in black and 0g  in blue. 

 

 
 

   We see from the graphs that there is a solution near  48º,     =  69º (There is 

another solution near 132º,     =  249º.) This should be good enough for our first 

guess, but if we want a better guess, it is easy to ask the computer to zoom in for a closer 

look: 
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We see from these graphs that there is a solution close to 48º.1,     =  68º.6. 

This is not only easily good enough for a first guess, but it may be all the precision you 

want.  However, let us proceed with a numerical calculation anyway.  Two methods. 

 

 

METHOD 1 

 

 
f  = 0: 

  

       





2sinsincos

)cossin(2
2tan

22 hcba

gf
            7.A.1                                   

g  = 0: 

 






2cos2sin)(

sincos
tan

2
1 hba

gf
              7.A.2 

 

 

   In this method we note that we can eliminate between the two equations, and so 

obtain a single equation in , which can be solved by the standard single-variable 

Newton-Raphson procedure.  Thus, if we denote the right hand sides of equation 7.A.1 by 
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Q, and the right hand side of eqaution 7.A.2  by P, and tan  by t, the two equations can 

be written as  

 

       PtQ
t

t


 21

2
                                                         7A,3,4                  

 

from which t is easily eliminated to form 

 

                                      PPQQF  )2(  =   0.                                                   7A.5 

 

and we have to solve 7A.5 for This can be done by Newton-Raphson iteration, for 

which we need 'F . where the prime indicates the -derivative.  On differentiating 

equation 7A.5, we obtain 

 

                                   )1(')1('2' 2  QPPQQF   ,    7A.6 

 

and 'P  and 'Q  are obtained by differentiation of the right hand sides of equations 7A.2 

and 7A.1: 

 

Here is a step-by-step algorithm, easily programmed for a computer 

 

1.  Read a,b,c,f,g,h 

2.  Guess .   

3.  Calculate and store  2cos,2sin,cos,sin  

4. Calculate P and 'P thus:



 )cossin(2  gfU 

            2sinsincos 22 hcbaV  

          VUP /  

          )sincos(2'  gfU  

           2cos22sin)(' habV  

          
2/)''(' VUVVUP   

 

5.   Calculate Q and 'Q thus:   

 

           sincos gfU              

           2cos2sin)(
2

1 hbaV  

          VUQ /  

           cossin' gfU     

           2sin22cos)(' hbaV  

         
2/)''(' VUVVUQ   
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6.    Calculate 'and FF : 

 

          PPQQF  )2(  

          )1(')1('2' 2  QPPQQF  

 

 7.   Calculate new : 

 

           '/
oldnew

FF  

 

 8.     Calculate   
old

oldnew




 



 9.   EITHER:   Replace the old  with the new, and return to step 3. 

 

       OR, if 
old

oldnew




 is as small as you wish it to be,  STOP. 

 

We already have an initial guess of    =  68º.6.  I obtained  68O.552263672895 

after 4 iterations. The calculation was done apparently instantaneouly. 

 

Either of equations 7A.1 or 2 yields 48O.091694731928. 

 
These solutions also satisfy the equation  c  =  0.  (This should be verified!) 

 

The opposite direction   oo 180,180  is also a solution. 

 

METHOD 2 

 

We have chosen to solve  

 
f  = 0: 

  

       





2sinsincos

)sincos(2
2tan

22 hcba

gf
            7.A.1                                   

g  = 0: 

 






2cos2sin)(

sincos
tan

2
1 hba

gf
              7.A.2 

       

 

by the two-variable extension of the Newton-Raphson procedure.  For this, we shall need 

the partial derivatives of  f  and  g  with respect to and to 
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           7A.10 

 

We then proceed with the extended Newton-Raphson iteration described in Appendix 5A. 

 

Here’s an algorithm, easy to program. 

 

1.  Read a,b,c,f,g,h 

2.  Guess  and .   

3.  Calculate and store  2cos,2sin,cos,sin,2tan,2cos,tan,cos,sin  

4.  Calculate the function f and its derivatives. Derivatives indicated by subscripts. 

 

 

 

)cossin(2  gfU  

 2sin2sincos 22 hcbaV  

VU /2tan f  

 

             


2sec2 2
f  

 

             )sincos(2  gfU  

             


2cos42sin)( habV  

              
2V

UVVU





f  

  
5.  Calculate the function g and its derivatives.           

 

     sincos gfU  

 2cos2sin)(
2

1 hbaV              

 VU /tan g  

 

 
2secg  

 

 


cossin gfU  

 


2sin22cos)( hbaV  

 
2V

UVVU





g  

 

Your guesses of course, were wrong.  You now have to find your errors  and  

by solving 0and0 


ggff .  Thus the algorithm proceeds:  

 

6.     Calculate  and : 
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                Bottom =   


 gfgf  

                Bottom/)( gffg


  

                Bottom/)( fggf


  

 

7.    Subtract these from your guesses: 

 

                 
oldnew

 

      
oldnew

     

 

8.     Calculate   
old

oldnew




  and     

old

oldnew




  

 



9.   EITHER:   Replace the old  and  with the new, and return to step 3. 

 

       OR, if 
old

oldnew




 and 

old

oldnew




 are as small as you wish them to be,  STOP. 

    

 

We already have an initial guess of  º  =  68º.6.  I obtained  

 

48O.091694731928    68O.552263672895 

 

after 3 iterations.  Again, the calculation was completed apparently instantaneously. 

 

 


