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CHAPTER 2 

Planes and Straight Lines 

 

2.1  Introduction 

 

   In two dimensions, the simplest figure is a straight line.  These is so little to be said 

about the geometry of a straight line that, when I dealt with the subject in  

orca.phys.uvic.ca/~tatum/celmechs/celms2.pdf  ,  I was able to describe the geometry of 

the straight line in a mere eight pages and only 35 equations.  Likewise, in three 

dimensions the simplest surface is a plane, and I don’t suppose I’ll need more than about 

28 pages and 79 equations in this Chapter to describe it. 

 

  This chapter will involve a lot of numerical calculation.  Before going further, I repeat 

the exhortation that I made in Preamble to these notes.   This will make all the difference 

between very heavy and tedious work and instant gratification. 

 

======= 

2.2   The Equation to a Plane 

 

   The equation                             0 CzByAx     2.2.1 

represents a plane that contains the origin of coordinates. 

 

   The equation                         DCzByAx      2.2.2 

 

represents a plane that does not contain the origin of coordinates.  The four constants are 

not independent.  If convenient in any particular situation, we could divide throughout by, 

for example, D (provided 0D ), to re-write the equation in the form 

 

.1 czbyax      2.2.3 

 

The equation can also be written the form  

 

1
000


z

z

y

y

x

x
     2.2.4 

 

where czbyax /1,/1,/1 000  .  The distances 000 ,, zyx  are then the 

distances where the three coordinate axes intersect the plane. 

 

   For those who like to keep track of units and dimensions (which should be everyone), 

we can suppose that x, y, z are distances, expressed in metres.  The coefficients ABCabc 

are each of dimension L-1
, expressible in m

1
,  000 ,, zyx  are of course lengths, of 

dimension L, and the constant D is dimensionless. 

 

   Three noncollinear points are sufficient to define a plane.  For example, the equation to 

the plane that contains the points (2, 4,  7),   (3,  5,  4),  (6, 2,  3) is found by solving 
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1326

1453

1742







cba

cba

cba

                2.2.5 

 

   This gives us, for the equation to the plane, 

 

.112782.003075.011278.0  zyx    2.2.6 

 

   The equation to a plane containing the points ),,(),,,(),,,( 333222111 zyxzyxzyx  can be 

written as 

 

0

1

1

1

1

333

222

111


zyx

zyx

zyx

zyx

,    2.2.7 

 

although I am not sure that this is a faster way of computing the coefficients than the 

method used in the example above. 

 

   The orientation of a plane in space is best given by giving the direction cosines of a 

normal to the plane.  In  figure II.1, P is a point ),,( zyx  in the plane 1 czbyax  .  

OM is a line from the origin, normal to the plane.  Let p be the length of this normal, and 

let ),,( nml be its direction cosines.  The coordinates of M are then ),,( pnpmpl  
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FIGURE II.1 

 

 

The direction cosines of OM are ),,( nml  and direction ratios of PM are 

),,( pnzpmyplx  . These lines are at right angles to each other, and therefore the 

scalar product of their direction ratios is zero:  .0)()()(  pnznpmymplxl   

That is, pnmlpnzmylx  )( 222 .  But since the point ),,( zyx  already 

satisfies 1 czbyax , we see that ),,( cba  are direction ratios of the normal to the 

plane 1 czbyax , and the direction cosines of the normal to it are 















 222222222
,,

cba

c

cba

b

cba

a
.  2.2.8  

 

 

 

O 

P   (x, y, z)  

M  ),,( pnpmpl  

plane  1 cybyax  

normal  ),,( nml  
p 
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2.3  Distance from the Origin to a Plane. 

 

   Since the plane 1 czbyax  does not contain the origin, it is of interest to know 

the perpendicular distance p from the origin to the plane.  The coordinates of the point 

where the normal from the origin hits the plane (i.e. point M in the figure) are  

),,( pnpmpl , and since M is in the plane it must satisfy 1 cpnbpmapl , from 

which we see that 

cnbmal
p




1
,     2.3.1 

 

and hence, if we substitute the expressions in equation 2.2.8 for the direction cosines, we 

arrive at 

 

222

1

cba
p


 .    2.3.2 

 

It will be noted that this is also the perpendicular distance from the origin to the plane 

.01  czbyax    The planes 1 czbyax  are parallel planes, at equal 

distances form the origin. 

 

The coordinates of M are 

 















 222222222
,,

cba

c

cba

b

cba

a
.  2.3.3 

 

(As always, check the dimensions of all these expressions.) 

 

Example  What is the perpendicular distance of the origin from the plane  

 

05273  zyx ?   (Assume all distances are expressed in m.)  At what point does 

this perpendicular hit the plane?  Where does the plane intersect the coordinate axes?    

 

 

Answers.   If we write the equation in the form  1
5
2

5
7

5
3  zyx we find that 

 

m635.0
62

5
p     2.3.4 

 

and the coordinates of M are 

 

161.0,565.0,242.0
31
5

62
35

62
15  zyx    m   2.3.5 
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The points where the plane intersects the coordinate axes are  

 

),0,0(),0,,0(),0,0,(
2
5

7
5

3
5     2.3.6 

 

 

2.4  Distance from an Arbitrary Point to a Plane. 

 

    What is the perpendicular distance of the point ),,( 111 zyx from the plane 

1 czbyax , and what are the coordinates ),,( 222 zyx of the point where the 

normal from ),,( 111 zyx hits the plane? 

 

    Direction ratios of the line joining the points ),,( 111 zyx and ),,( 222 zyx  are just 

),,( 212121 zzyyxx  , and direction ratios of the normal to the plane are ).,,( cba   

These represent the same direction, and therefore are proportional to each other.  That is 

 

kczz

kbyy

kaxx







21

21

21

      2.4.1 

The dimensions of k are L2
. 

 

These, together with the observation that the point ),,( 222 zyx is in the plane, namely 

that 

 

1222  czbyax ,     2.4.2 

 

show that 

 

222

111 1

cba

czbyax
k




     2.4.3 

 

and hence, after a little algebra,  

 

222

11
22

1
2

222

11
22

1
2

222

11
22

1
2

)1()(

)1()(

)1()(

cba

byaxcbaz
z

cba

axczbacy
y

cba

czbyacbx
x
















    2.4.4 
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The perpendicular distance p from the point to the plane, which is just the distance 

between the points ),,( 111 zyx and ),,( 222 zyx  is rather easier, for it is just given by 

 

)(])()()[( 22222
21

2
21

2
21

2 cbakzzyyxxp  ;  2.4.5 

 

that is:                                     
222

111 1

cba

czbyax
p




 .    2.4.6 

 

 

Example  How far from the plane 05273  zyx  are each of the following four 

points?    

 

)3,5,7(:C

)2,3,4(:B

)1,2,5(:A

)0,0,0(:O

 

 

Note that, if we write the equation to the plane in the form 1 czbyax ,  our 

particular plane becomes  1
5
2

5
7

5
3  zyx . 

 

Answers.  By application of equation 2.4.6 for p, and taking the symbol to mean the 

positive square root, we find the following distances of these four points from the plane: 

 

m381.0:C

m000.0:B

m016.1:A

m635.0:O









p

p

p

p

  

 

We see that the distance of B from the plane is zero.  That means, of course, that B is 

contained in the plane.  But what do the signs on the others mean?  Not very much for a 

single point, and we can quite happily and correctly say that the distance of the point A 

from the plane is 0.016 m.  However, we can interpret the signs as follows:  The distance 

of A from the plane is negative; B is in the plane, and its distance from the plane is zero; 

the distance of C from the plane is positive.  This means that A and C are on opposite 

sides of the plane.  Likewise, A is on the same side of the plane as the origin, while C is 

on the opposite side of the plane from the origin. 

 

   Thus is general, if we have a plane 1 czbyax  and two points 

),,(),,,( 222111 zyxzyx , these two points are on the same side of the plane if 

1and1 222111  czbyaxczbyax have the same sign, and they are on 

opposite sides of the plane if these two expressions are of opposite sign. 
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We take the opportunity here of calculating the coordinates of the points M where the 

perpendiculars from these four points hit the plane: 

 

)097.3,661.4,145.7(:M

)000.2,000.3,000.4(:M

)742.0,903.2,613.4(:M

)161.0,565.0,242.0(:M

C

B

A

O









 

 

2.5   Two parallel planes 

 

   Here are two parallel planes: 

 

09273:P

05273:P

2

1





zyx

zyx
    2.5.1 

 

Two questions: 

 

     How far apart are they? 

     Do any of the following four points lie between these planes? 

 

)8,2,3(:C

)6,3,5(:B

)2,2,4(:A

)0,0,0(:O






 

 

The point )0,0,3( is in the plane P2.  Direction ratios to the plane are  )2,7,3(  .   

Therefore the normal to the plane, passing through the point )0,0,3( ,  is given by the 

equations  

 

273

3 zyx



    2.5.2 

 

This line hits plane P1 at a point given by the solution of these two equations together 

with 

 

05273  zyx .    2.5.3 

 

That is, at the point                      ),,(
9
2

9
7

9
30   

The distance between this point and )0,0,3(  is the distance between the planes.   That 

is,  m385.6 . 
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To answer the second question, let’s first of all calculate the distances of each of the four 

points from the two planes.  Here they are, although to answer our question, we only need 

look at the signs. 

 

                                               P1                           P2 

 

O                                        0.635                   1.143  

A                                        1.397                   1.905 

B                                        0.127                   0.391 

C                                        0.762                   0.254 

 

 

We see from this that the point B is between the two planes. 

 

 

2.6  Two Planes, Not Necessarily Parallel 

 

   The left hand side of the following equation 2.6.1 can be written (not necessarily easily) 

as the product of two linear expressions, and thus equation 2.6.1 represents two planes.   

    

.0652314143647212012 222  zyxxyzxyzzyx   2.6.1 

 

How do we find the two linear factors? This is how I did it - maybe there’s an easier way.  

Let me know if you think of one. 

 

  By successively putting 0,0,0  yxxzzy , I found that the planes 

contain the following six points on the coordinate axes: 

 

),0,0(:C),0,0(:C

)0,,0(:B)0,,0(:B

)0,0,(:A)0,0,(:A

7
3

25
2

1

5
2

24
3

1

2
3

23
1

1







 

 

There are four ways in which two planes can contain these six points.  I list them below, 

together with the equations that represent them: 

 

      

06984:CBA06141518:CBA

069154:CBA03749:CBA

03742:CBA02356:CBA

0614154:CBA069818:CBA

112221

122211

212121

222111









zyxzyx

zyxzyx

zyxzyx

zyxzyx

  2.6.2 
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Only the second of these pairs of linear equations, when multiplied together, yield the 

original quadratic equation, and these are therefore the sought-after factors.  The original 

quadratic equation 2.6.1 therefore represents the two planes 

 

03742

02356





zyx

zyx
    2.6.3 

 

Let us now try four more examples, each of which has a slightly different wrinkle. 

 

   Example 2. 

 

.0452898424212284499 222  zyxxyzxyzzyx  2.6.4 

 

  By successively putting 0,0,0  yxxzzy , it is found that the planes 

contain the following six points on the coordinate axes: 

 

),0,0(:C),0,0(:C

)0,,0(:B)0,,0(:B

)0,0,(:A)0,0,3(:A

2
5

22
9

1

7
9

22
5

1

3
5

21





 

 

Again, there are four possible pairs of planes that connect six points.  I list only the pair 

A1B2C1 and A2B1C2: 

 

05273:CBA09273:CBA 212121  zyxzyx .  2.6.5 

 

These are the two parallel planes that we dealt with in Section 2.5, and which we found to 

be separated by 6.385 m.  The other three pairs of planes that can connect the six points 

yield linear expressions which, when multiplied, do not yield the original quadratic 

expression. 

 

 

    Example 3. 

 

   Next, let us try 

 

.0366036241220302594 222  zyxxyzxyzzyx  2.6.6 

 

This turns out to be 

 

0)6532( 2  zyx  

 

which you could describe as two coincident planes, or, if you prefer, just one plane. 
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   The reader who has worked through these examples in detail will have discovered that 

it is a good deal more laborious than might be apparent to a more casual reader.  The 

writer (jtatum at uvic dot ca) would be grateful if anyone can suggest a quicker way of 

doing the factorization. 

 

Lastly, two more: 

    

  Example 4.  

 

0103262682624212 222  zyxxyzxyzzyx  2.6.7 

 

and 

    

   Example 5 

 

          .045629543 222  zyxxyzxyzzyx    2.6.8 

 

Don’t spend time on these  you will not be able to split them into two real linear factors. 

Neither of them represents two planes.  For one thing, neither of them crosses the x-axis 

in any real points. (Try it and see.)  In fact the first equation represents a paraboloid, and 

the second represents an ellipsoid.  This raises the question, given an equation of the form 

 

,0222222222  dwzyuxhxygzxfyzczbyax v   2.6.9 

 

how do I know whether it can be factored into two real linear factors, representing two 

planes?  We shall discuss this in a later chapter.  In the meantime let us note (without yet 

proof) that a necessary (but not sufficient) condition that it can be factored into two real 

linear factors is that 

 

.0

cfg

fbh

gha

    2.6.10 

 

You might like to evaluate this determinant (which we shall later denote as 3) for each 

of the above five examples.  The first three are zero, as they must be for two planes. The 

fourth is also zero, and, although this is a necessary condition for the equation to 

represent two planes, it is not a sufficient condition.  The last of the five is nonzero. 

 

   Let us now return to the two planes 

 

03742

02356





zyx

zyx
   was 2.6.3, now is    2.6.11 
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They are not parallel.  I have two questions: 1.  What is the angle between the two 

planes?   2.  The two planes intersect in a line.  What are the direction cosines of this 

line? 

 

Answers: 

 

1.  The direction cosines of the normals to the two planes can be thought of as two 

vectors,  A and B: 

 

A  =  (6,  5,   3)   and    B  =  (2,  ,   7)    

 

and the angle  between them can be found by the usual definition of the dot product: 

 

 cosABBA.  

 

Thus                                                    º.6628 

 

if you go clockwise from A to B.  Otherwise, it’s 65º3372 . 

 

 

2. 

 

   By successively putting ,0,0,0  zyx  we can see that the line represented by 

the two equations intersects the  xyzxyz ,, planes at 

     0,,,,0,,1,1,0
17
7

34
23

24
7

48
23   respectively. Direction ratios of the line can be 

found from any pair of these three points.  [It will be recalled that if we have two points 

),,(,),,( 222111 cbacba , then the line joining them has direction ratios 

),,( 212121 ccbbaa  .]   In integers, direction ratios of the lines are )34,48,23( , 

and the direction cosines are therefore )53833.0,75999.0,36416.0( . 

 

 

 

   Consider now the two planes 

 

0

0

2222

1111





DzCyBxA

DzCyBxA
    2.6.12 

 

By successively putting 0,0  yx , we can see that the line intersects the yz-plane at 

the point 








 







1

111
1

1221

1221
11 ,,0

C

yBD
z

CBCB

DCDC
yx ,  2.6.13 
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and it intersects the zx-plane at the point 

 








 







1

211
22

1221

1221
2 ,0,

C

xAD
zy

CACA

DCDC
x .  2.6.14 

 

Direction ratios of the line connecting these two points [i.e. of the line of intersection of 

the two planes (provided that they are not parallel)] are  

 

),,( 1212 zzyx      2.6.15 

 

and the direction cosines are 

 

   .
)(

,
)(

,
)( 2

12
2
1

2
2

12

2
12

2
1

2
2

1

2
12

2
1

2
2

2























 zzyx

zz

zzyx

y

zzyx

x
 2.6.16 

 

   The next section will be very much easier to follow if you were to program your 

computer to calculate these direction cosines instantly for any two planes. 

 

 

2.7  Three Planes 

 

   Unless two or all three of three planes are parallel, in general three planes will intersect 

at a single point.  Consider, for example, the three planes 

 

011265

068

09432







zyx

zyx

zyx

    2.7.1 

 

They obviously intersect at the point (1, 1, 1). 

 

 But now consider the following three planes, which I refer to with the letters a, b, c: 

 

    

0122065:

068:

09432:







zyx

zyx

zyx

c

b

a

    2.7.2 

 

   You may have trouble solving these.  The problem is that the determinant of the 

coefficients is zero, which means that any one of the equations is a linear combination of 

the other two.  For example, .3 cba   

 

   If you calculate the direction cosines of the line of intersection of any two of these 

planes (see Section 2.6), you will find that the direction cosines of the line joining any 
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two pairs are the same, namely ).645049029.0,894992580.0,051390813.0(   That 

means that the three planes enclose a triangular prism. 

 

  For convenience I refer to the line of intersection of planes b and c with the letter A 

                                      and the line of intersection of planes c and a with the letter B 

     and the line of intersection of planes a and b with the letter C 

These lines are the edges of the triangular prism. 

 

The angle between the planes b and c is    11º.28.  

The angle between the planes c and a is     51º.89. 

The angle between the planes a and b is  116º.73. 

Thus the shape of the triangular cross-section of the prism is like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

I haven’t yet given any indication of its size.  To find the size, let us consider any point 

on the line (sic) C.  For example the point )1,1,1(  is on the line C.  From Section 2.4, 

we know how to calculate its distance from the plane c   i.e. the dashed line in the 

figure. We find that the distance of C from c is 0.1397.  Of course, we obtain the same 

result if we start with any point on the line C such as the points )0,21,27(   or 

)95.0,2,4.0(   , or any other point that lies on C. 

 

   Having found the distance of C from c, we can immediately find the sides of the 

triangle by elementary means. Thus we find that 

 

   The distance between the edges B and C is 0.1776. 

   The distance between the edges C and A is 0.7080. 

   The distance between the edges A and B is 0.8037.                                     

 

   The calculation can (and should) be checked by finding the distances of A from a, and 

of B from b.  These should result in the same length of the sides of the triangle. 

 

Now consider the three planes     

 

A B 

C 

b 

c 

a 
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092065:

068:

09432:







zyx

zyx

zyx

c

b

a

     2.7.3 

 

These differ from the previous three only by the constant term in the third equation.  In 

other words, all we have done is to translate the plane c without rotation.  Obviously, 

then, we find the angles between the three planes are as before: 

 

The angle between the planes b and c is    11º.28.  

The angle between the planes c and a is     51º.89. 

The angle between the planes a and b is  116º.73. 

 

  Now let us find, by the same method as above, the distance between C and c.  We find 

that this distance is zero.  Likewise we shall find that the distances between A and a and 

between B and b are zero.  The three planes are like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case the three planes intersect in a single line. 

 

Summary of the last three examples 

 

The three planes  

011265

068

09432







zyx

zyx

zyx

    2.7.1 

 

intersect at a single point. 

 

   

 

 

b 

c 

a 
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The three planes                     

0122065

068

09432







zyx

zyx

zyx

    2.7.2 

 

enclose a triangular prism. 

 

 

 

The three planes                      

092065

068

09432







zyx

zyx

zyx

    2.7.3 

 

enclose a prism of zero area;  i.e. they intersect in a straight line. 

 

 

Suppose that you work in algebra rather than with particular numbers, what about the 

following three planes, in which we assume that no two of the planes are parallel? 

 

0

0

0

3333

2222

1111







dzcybxa

dzcybxa

dzcybxa

    2.7.4 

 

Define:     

333

222

111

cba

cba

cba

         and         

333

222

111

'

cbd

cbd

cbd

 .   2.7.5 

 

you should find, if you work through the algebra in the same way as we did the numerical 

examples, that: 

 

1.  If 0 , the three planes intersect at a single point. 

 

2.  If  0   and  0'  , the three planes enclose a triangular prism. 

 

3.  If  0   and  0'  , the three planes intersect in a common line. 

 

 

 

 

2.8   Straight Lines  

 

   A straight line is represented by the intersection of two (nonparallel) planes. 
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   We saw in Section 2.6 that the following two equations (each of which represents a 

plane: 

 

0

0

2222

1111





DzCyBxA

DzCyBxA
     2.8.1 

 

together represent a straight line.  We also determined in Section 2.6 that direction ratios 

of this line are: 

 

 

 


































 









1221

1

1221

1

1

1221

2112

1221

1221

1221 ,,
CACA

A

CBCB

B

C

DCDC

CBCB

DCDC

CACA

DCDC
    

           2.8.2 

This can be written, for ease of computation, as  

 
























q

A

r

B

C

p

r

p

q

p 11

1

,, ,    2.8.3 

 

where    1221 DCDCp  ,     2.8.4 

 

    1221 CACAq   ,     2.8.5 

  

    2112 CBCBr    .     2.8.6 

 

Thus, for example, direction ratios of the line of intersection of the two planes 

 

line 1:                                    
03742

02356





zyx

zyx
     2.8.7 

 

are               )3708.0,1,64791.0(  , 

 

and the direction cosines are      )53833.0,75999.0,36416.0( , 

in agreement with what we obtained in Section 2.6. 

 
[By the way, you may have noticed that I use the expression “direction ratios” but “the direction cosines”.    

This is not accidental.]  

 

 

Now let us consider another line, namely the line 
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line 2:                                    
02523

07234





zyx

zyx
  .    2.8.8 

 

Its direction cosines are  

 

    )03104.0,80700.0,58973.0( . 

 

   The next question that might occur to us is:  Where do the two lines 2.8.7 and 2.8.8 

intersect?  This is immediately followed by the question:  Do they intersect?  In three 

dimensions two lines in general will not intersect.  Two lines will intersect at a point iff: 

 

1.  They are coplanar. 

2.  They are not parallel. 

 

Otherwise the two lines are said to be skew, in which case we shall want to know:  What 

is the least distance between the two lines?  If you can think vividly in three dimensions, 

you will probably agree that the shortest distance between two skew lines is along a third 

line joining the two and perpendicular to each.  The calculation is fairly long, though 

trivial by computer. 

 

   To help to visualize the two lines, let us note that line 1intersects the coordinate planes 

at 

 

)0,41176471.0,67647059.0(

)6291.0,0,64791.0(

)1,1,0(

 



 

 

or, for short: 

 

 

)00.0,41.0,68.0(

)29.0,00.0,48.0(

)00.1,00.1,00.0(





. 

 

 

 

   And line 2 intersects the coordinate planes at 

 

)0,5.6,5(

)11548462.1,0,19230769.1(

)05263158.1,63157895.1,0(







 

 

or, for short: 
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)00.0,50.6,00.5(

)12.1,00.0,19.1(

)05.1,63.1,00.0(







. 

 

   It may be more convenient to write the equations to the two lines in the forms 

 

 

line 1:   
1

1

1

1

1

1

n

cz

m

by

l

ax 






    2.8.9 

 

line 2:   
2

2

2

2

2

2

n

cz

m

by

l

ax 






 .   2.8.10 

 

 

Here ),,( 111 cba    is some point that we know to be on line 1 

         ),,( 222 cba  is some point that we know to be on line 2 

         ),,( 111 nml   are the direction cosines of line 1 

         ),,( 222 nml  are the direction cosines of line 2 

 

In our particular example, we may choose 

00.1,00.1,00.0 111  cba  

00.0,50.6,00.5 222  cba  

and the direction cosines are 

53833.0,75999.0,36416.0 111  nml  

03104.0,80700.0,58973.0 222  nml  

 

Let  ),,(P 1111111111 ncmbla    be some other point on line 1, and 

let   ),,(P 2222222222 ncmbla  be some other point on line 2. 

 

Direction ratios of P1P2 are 

 

     ),,( 221121221121221121 nnccmmbbllaa   2.8.11 

 

If P1P2 is to be the shortest distance between line 1 and line 2, it must be perpendicular to 

each.  That is, the dot product of the direction ratios of P1P2 with each line must be zero: 

 

0)()()( 221121122112112211211  nnccnmmbbmllaal  

           2.8.12 

and 
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0)()()( 221121222112122211212  nnccnmmbbmllaal . 

           2.8.13 

These can be written: 

 

0)()()()()( 21121121122121211
2
1

2
1

2
1  ccnbbmaalnnmmllnml

           2.8.14 

and 

0)()()()()( 2122122122
2
2

2
2

2
21212121  ccnbbmaalnmlnnmmll

           2.8.15 

Provided that 222111 nmlnml  are the direction cosines and not merely direction ratios, 

these reduce to 

 

   0)()()()( 21121121122121211  ccnbbmaalnnmmll          2.8.16 

   0)()()()( 21221221221212121  ccnbbmaalnnmmll  2.8.17 

 

To solve these for 1 and 2 by computer is trivial, although seriously tedious by hand. 

 

In our example, these equations are 

 

089747.241527.0 21      2.8.18 

041821.741527.0 21  ,    2.8.19 

 

with solutions 

 

51007.7,22120.0 21      2.8.20


   The coordinates of P1 and P2 are therefore 

 

                                     P1:      (0.08055,    0.83189,    1.11908) 

                                     P2:      (0.57107,    0.43936,    0.23310) 

 

and the distance between them, which is the shortest distance between the two lines, is  

1.08611.  Of course, if the coordinates of P1 and P2 turned out to be identical, this would 

mean that the two lines intersect at that point.  

 

 

 

2.9   Finding a Meteorite 

 

   We end this chapter with three astronomical examples, all to do with meteors or 

meteorites, the first in this section 2.9, and a second in the next section 2.10, and a third 

in Section 2.11. 

 



 20 

   We suppose that two observers are situated on the surface of the Earth and separated by 

a few tens of kilometres.  Both observe a meteor in the sky, and each of them makes 

measurements of the altitude and azimuth of two points along the apparent path of the 

meteor on the sky.  The object is to find the true path of the meteor through the 

atmosphere, and to predict where the meteorite will land. 

 

  We shall use a Flat Earth approximation.  Towards the end of the section we shall 

briefly discuss how good or how bad such an approximation is. 

 

  We shall call the observers O and A.   In what follows, all distances will be assumed to 

be expressed in km.  Observer O is at the origin of a rectangular coordinate system, and 

the coordinates of observer A referred to this system are (a, b, 0), as shown in figure II.1.  

Observer A will refer his own observations to his local coordinate axes indicated in figure 

II.1 in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   In figure II.2, observer O measures the zenith distance  and the azimuth  of two 

points M and N on the apparent path of the meteor. Azimuths are expressed 

counterclockwise from the x- axis in the usual convention for spherical coordinates.  

x- axis, to East 

z- axis, to zenith 

y- axis, to North 

O 

A 
 a 

b 

FIGURE II.1 
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These measurements show that the path of the meteor is in the plane OM1M2.   The 

rectangular coordinates of these three points are as follows: 

 

O:     (0, 0, 0) 

Ml:   )cos,sinsin,cossin( 11111111  rrr 

M2:   )cos,sinsin,cossin( 22122222  rrr  

 

The equation to the plane OM1M2 is immediately given by equation 2.2.7, repeated here 

as equation 2.8.1, in which the ,..., 11 yx  etc are the coordinates given above for the three 

points. 

  

0

1

1

1

1

333

222

111


zyx

zyx

zyx

zyx

    was 2.2.7, is now            2.9.1 

                   

 

This is an equation of the form 

 

01111  DzCyBxA     2.9.2 

 

in which the coefficients are functions of the measured angles, and which do not, it will 

be noted with relief, contain the unknown distances r1 and r2. 
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   At the same time, observer A also measures the zenith distance and azimuth of two 

points N1 and N2 on the meteor track, referred to his (red) coordinate system.  (These 

need not be, and indeed probably will not be, the same two points that O measured.).  

We’ll call the angles measured with respect to the red coordinate axes )','( 11   for N1 

and )','( 22   for N2, and we’ll denote the unknown distance of N1 and N2 from A by 1'r  

and .'2r  

 

  The meteor is now known to be in the plane AN1N2, and the coordinates of these three 

points referred to O as origin are 

 

A:     (a, b, 0) 

Nl:   )'cos','sin'sin','cos'sin'( 11111111  rrbra 

N2:   )'cos','sin'sin','cos'sin'( 22222222  rrbra  

 

By application of equation 2.9.1, we now know the equation to the plane AN1N2, referred 

to O as origin of coordinates.  We’ll call this equation 

z- axis, to zenith 

x- axis, to East 

y- axis, to North 

O 

A 
 a 

b 

FIGURE II.2 

),,(M 1111 r 

),,(M 2222 r 

r1 

r2 
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02222  DzCyBxA ,    2.9.3 

 

in which, as before, the coefficients contain only the measured angles and not the 

unknown distances.  With equations 2.9.2 and 2.9.3, we now know the path of the meteor 

through the sky. 

 

   If you eliminate z from these two equations, the result will be an equation of the form 

 

.0 cbyax     2.9.4 

 

This is the equation of the projection of the meteor’s path on the ground.  If any material 

has reached the ground, it will be along this ground track.  

 

  If you put z = 0 in equations 2.9.2 and 2.9.3, and solve the resulting equations for x and 

y, this will give the ground coordinates of where the meteorite hit the ground, assuming it 

continued to travel in a straight line.  Presumably the meteorite will actually fall 

somewhere along the line 2.9.4, but short of this point. 

 

  Further details of this method, with a numerical example, are to be found in JRASC 

92,78, (1988). 

 

  The Flat Earth approximation assumes that the height of any observer above sea-level is 

small compared with the height of the meteor above sea level.  The latter is typically of 

the order of 100 km.   It also assumes that the distance the A is below the tangent plane at 

O is also small compared with the height of the meteor.  If the distance between O and A 

is about 25, km, the distance of A below the tangent plane at O is about 0.1 km.  Whether 

the Flat Earth approximation is good enough depends upon the precision of the 

measurement, and on how precise a solution is desired.  For visual estimates of zenith 

distances and azimuths by surprised observers, the Flat Earth approximation is more than 

adequate.  If two large-scale photographs are obtained and measured precisely, the 

sphericity of the Earth is just one of a number of other factors that have to be taken into 

account. 

 

2.10  The Widmanstätten Pattern. 

 

   An octahedrite meteorite consists of alternating plane lamellae parallel to the faces of a 

regular octahedrite.  When you make a plane slice through an octahedrite, you see, in the 

slice, a pattern of lines, known as the Widmanstätten pattern.  These lines are the 

intersection of the octahedrite faces with the plane of your slice.  We’ll see in this section 

what these lines look like. 

 

   First, let’s look at an octahedron.  In figure II.3, I draw just the upper half of a regular 

octahedron, which is a pyramid.  In (a)  I label the four faces.  In (b) I set up a coordinate 

system. 

                                                 



 24 

 

 

 

 

 

 

                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE II.3 

 

 

   I take the length of each edge to be 2.  In that case, face A intersects the three 

coordinate axes at  2,,1 000  zyx , and so, using equation 2.2.4, we find, for 

the equation to face A: 

 

       .1
2


z
x       2.10.1 

Likewise, we find that the equation to face B is: 

       .1
2


z
y       2.10.2 

 

A 

B 

C 

D 

z 

x 

y 

(a) 

(b) 
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Now let us make a plane slice through the meteorite, as indicated by the shaded ellipse in 

figure II.4.   We’ll suppose that the spherical angles of the normal to the slice are ),(  , 

and hence its direction cosines are ).cos,sinsin,cos(sin   

 

 

                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE II.4 

 

The relations between the  xyz  and  XYZ coordinate systems are: 

 

 cossinsincoscos ZYXx     2.10.3  

Z 

X 

Y 

y 

z 

x 

y 

Z 

z 

x 





(a) 

(b) 
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 sinsincossincos ZYXy     2.10.4 

  

.coscossin  ZXz      2.10.5 

 

  Face A of the octahedron intersects the XY-plane in a line whose equation is found by 

substitution  of expressions 2.10.3, 2.10.4, 2.10.5 into equation 2.10.1 and then putting Z 

= 0, resulting in 

 

  1sinsincoscos
2

1  YX .    2.10.6 

 

This is one of the lines in the Widmanstätten pattern. 

  

 Likewise face B of the octahedron intersects the XY-plane in the line 

 

  1cossinsincos
2

1  YX .    2.10.7 

 

The slopes of these two lines are, respectively, 

 











sin2

sin

tan

cos
A

m       2.10.8 

 

and         .
cos2

sin
tancos






B
m      2.10.9 

 

For example, suppose that the orientation of the slice is given by oo 15,25  , 

then the slopes of these two lines are: 

 

 

0665.0,2277.2 
BA

mm      2.10.10 

 

and so the angle between these two lines in the Widmanstätten pattern is 69º.6 . 

 

   Here is a photograph of the Widmanstätten lines in a slice of the Gibeon octahedrite 

from the collection of David Balam. 
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FIGURE II.4 

 

 

   

   For further details on this problem - including the inverse problem of determining  and 

 from measurements of the angles in the Widmanstätten pattern - see Meteoritics and 

Planetary Science 54, 2977 (2019). 

 

 

 

 

2.11.  An Exploding Meteoroid 

 

   For our third and last example, we have a meteoroid hurtling through Earth’s 

atmosphere.  The surface becomes exceedingly hot, while the interior remains at the low 

temperature of outer space.  Consequently there are enormous thermomechanical stresses 

within the meteoroid, which suddenly explodes in a terminal burst, which we shall treat 

as a point source of sound.  The sound from this terminal burst is heard by three 

observers (or by three seismographs, which can detect sonic waves) on the ground. The 

sound arrives at the three observers at different times, because of the different distances 

of the observers from the terminal burst.  We suppose that the three observers record the 

times when they hear the sound as well as the time when they saw the visual flash.  The 

object is to determine the position of the meteoroid at the instant of the terminal burst.  

For the purposes of this example, we shall suppose that the atmosphere is isothermal, and 
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hence that the speed of sound is the same everywhere.  We also suppose that the Earth is 

flat except from the little hills on which the observers might be situated. 

 

   Let us set up a cartesian coordinate system Oxyz.  O is some point on the ground, and 

the x-, y- and z-axes point respectively to east, north and up.  The coordinates of the three 

observers are  ),,(,),,(,),,( 333222111 zyxzyxzyx , and the coordinates of the 

terminal burst are ),,( zyx .  The distances of the observers from the terminal burst are 

respectively d1, d2 , d3.  If we suppose that each observer recorded the time of the visual 

flash and the time when he/she/it heard the bang, and that the speed of sound is known, 

then d1, d2 , d3 are all known.  The terminal burst is at the centre of each of the three 

spheres of radii d1, d2 , d3. The equations of these spheres are 

 
2
1

2
1

2
1

2
1 )()()( dzzyyxx     2.11.1 

    
2
2

2
2

2
2

2
2 )()()( dzzyyxx     2.11.2 

 
2
3

2
3

2
3

2
3 )()()( dzzyyxx     2.11.3 

 

All that has to be done then is to solve these three equations for the three unknowns x,  y,  

z.    For example, if  

 

09.24,4.0,16,31

10.23,3.0,42,4

99.33,2.0,2,17

3333

2222

1111







dzyx

dzyx

dzyx

 

 

(all distances in km), then the solution to the three equations is 

 

.km83.13,95.32,39.20  zyx  

 

The three equations are, of course, quadratic equations, and the practical solution of three 

quadratic equations in three unknowns requires a little computational experience 

  

   Further details of this problem are to be found in Meteoritics and Planetary Science 34, 

571 (1999). 


