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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1   Quadric Surfaces    

 

These notes will be discussing the equation 

 

             .0222222222  dwzyuxhxygzxfyzczbyax v                  1.1.1

  

That is to say, the general second degree equation in three variables.  It is assumed that 

the reader is already familiar with the geometry of the conic sections and the 

corresponding equation in two variables, as discussed for example, in Chapter 2 of my 

notes on Celestial Mechanics,  astrowww.phys.uvic.ca/~tatum/celmechs.html   If you are 

not familiar with the properties of the conic sections, and the corresponding equation in 

two variables, this set of notes may not  be for you just yet. 

 

      Equation 1.1.1 describes a surface in three-dimensional space.  Depending on the 

coefficients, the surface will usually be an ellipsoid (of which spheroids and spheres are 

special cases) or a paraboloid or a hyperboloid, though there are a few other possibilities, 

such as a cone or a cylinder, or one or two planes. I shall refer to the several possible 

surfaces represented by equation 1.1 as quadric surfaces, or occasionally for brevity if 

somewhat ungrammatically as just a quadric.  If the coefficients of all the quadratic terms 

are zero. we are left with just 0222  dwzyux v , which is a single plane. We’ll 

discuss planes in Chapter 2. 

      

   If you rotate an ellipse (Figure I.1 below) about its major axis, you generate a prolate 

spheroid.   A rugger ball is an example.  If you rotate an ellipse about its minor axis, you 

generate an oblate spheroid.  The figure of the Earth (a sphere slightly flattened at the 

poles) is an example. If you have a figure in which three orthogonal sections are all 

ellipses (such a figure cannot be generated by rotating an ellipse), you have a triaxial 

ellipsoid. 

 

 

 

 

 

 

 

 

 

 

 

                                                         FIGURE I.1 
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  If you rotate a parabola (Figure I.2 below) about its symmetry axis, you get what is 

commonly called a paraboloid, but which is in fact a special paraboloid which we should 

call a circular paraboloid.  An example would be a reflecting telescope mirror.  Another 

example would be the surface of a cup of tea when you have just stirred it.  If you have a 

vat of molten glass or fused quartz which you rotate, its surface will take up the shape of 

a circular paraboloid, and if you let the glass cool and solidify while still rotating the vat, 

you have the makings of a fine paraboloidal telescope mirror. 

 

   It is quite possible to have a paraboloid whose cross-sections perpendicular to its 

symmetry axis are ellipses rather than circles, although these cannot be generated by 

rotating a parabola.  This would be an elliptical paraboloid. 

 

 
             FIGURE I.2 

 

 

 

   If you rotate a hyperbola about its transverse axis (i.e. the horizontal axis in the Figure 

I.3 below), you generate a circular hyperboloid of two sheets.   If you rotate it about its 

other axis (the vertical axis), you generate a circular hyperboloid of one sheet.  The cross-

sections of a hyperboloid need not be circular - they might be ellipses, although of course 

you cannot generate elliptical hyperboloids merely by rotating a hyperbola. 
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FIGURE I.3 

 

 

   Let us get back to equation 1.1.1, repeated here for convenience: 

 

             .0222222222  dwzyuxhxygzxfyzczbyax v                  1.1.1

  

   Under some circumstances (to be discussed in Section 5.2 of Chapter 5) it might be 

possible to translate (without rotation) the coordinate axes to a position such that equation 

1.1.1, when referred to the new axes, takes the form  

 

0222222  dhxygzxfyzczbyax                                        1.1.2 

  

Notice now that if you reverse the signs of x and y and z you change nothing, and the 

equation represents a figure that has a centre of symmetry, which coincides with the 

origin of the new coordinate axes.  The figure is symmetric with reflection through its 

centre. Such a figure is a central quadric.  That is, it is an ellipsoid or a hyperboloid or a 

cone  - but  not a paraboloid or a pair of planes. 

 

  It might now even be possible to rotate the axes of coordinates so that the equation takes 

an even simpler form: 

 

                                       constant.222  czbyax                                                     1.1.3 
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If we can succeed in doing this, we shall have found a coordinate system such that the 

axes of coordinates coincide with the symmetry axes of the quadric surface. 

 

 

1.2   Direction Cosines 

    

   We shall have frequent need to describe the orientation of a line in three-dimensional 

space.  This may easily be done by specifying the familiar meridional and azimuthal 

angles and  of a spherical coordinate system (see Figure I.4a). is in the range 0º to 

180º, and  is in the range 0º to 360º.  Equally frequently in these notes we shall use the 

three angles  that the line makes with the x-, y-, z-axes (see Figure I.4b),  or the 

cosines of these angles,  cos,cos,cos .  (The angle  is identical with the angle .)  

These three cosines are known as the direction cosines.  They are commonly denoted by 

nml ,, .  It will not have escaped the reader that, from the theorem of Pythagoras, they are 

related by 

 

   1222  nml         1.2.1 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

   The direction cosines are related to the spherical angles by the (we hope familiar) 

relations 

 

l   =  sincos     

m  =  sinsin     
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FIGURE I.4 
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n  =   cos      

 

 

   Example. l  =  0.2345  and m = 0.6789.  What are the angles ? 

Beware!  This is not as straightforward as it sounds!  First we’ll use equation 1.2.1 to 

calculate n.  Then we’ll just calculate  from equation 1.2.4. What could be easier? 

We obtain: 

            

 

          l = 0.2345  m = 0.6789      n =   0.6958 

                        

  76º.44                      47º.24               45º.91 

                   283º.56                    312º.76             314º.09 

                                                                            134º.09 

                                                                            225º.91 

 

We find two possible answers for , two for , and four for  a total of 16 possible 

combinations!  Which one do we want?  We are reminded here that quadrant problems 

are among the most frustrating and frequent in trigonometry (and in celestial mechanics), 

and they cannot be ignored. We must never, ever forget that a square root has two 

solutions, and an inverse trigonometric function has two solutions between 0 and 360 

degrees. 

 

First:  White it is true that l, m, n are related through equation 1.4, this does not excuse us 

from specifying all three.  In setting the question, I could have specified that n = +0.6958.  

Second, the range of each of is from 0º to 180º.  Assuming that I had specified that 

n = +0.6958, the answer to the problem is 

 

   =   76º.44                  =      47º.24              =     45º.91 

 

It is, however, permissible to change the signs of all the direction cosines.  For example, 

  l = 0.4623,    m  =0.2948      n   =  0.8329    yields 

62º            =   107º             34º          

while 

  l = 0.4623,    m  =0.2948      n   =  0.8329    yields 

118º            =   73º             146º          

 

These two orientations are identical, except that they are expressed in opposite octants. 

 

  The number triplet ),,( nml  tells the orientation of a line, and it can be regarded as a 

vector, with components l, m, n.  And, since the components obey equation 1.2.1, the set 

of direction cosines is a unit vector. If two lines with direction cosines 

),,(),,,( 222111 nmlnml  are at right angles to each other, their dot product 

212121 nnmmll   is zero. 
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   A set of three numbers that are proportional to the direction cosines - that is to say 

cncmcl ,, - are direction ratios.  A set of direction ratios tells us the orientation of a line 

just as well as does a set of direction cosines, and the set constitutes a vector, but not a 

unit vector.   

   The distance r from the origin to the point ),,( cba  is 222 cba  , and the direction 

cosines of the line joining the origin to the point ),,( cba are )/,/,/( rcrbra .  The triplet 

),,( cba is, then, a set of direction ratios of the line joining the origin to the point ),,( cba . 

If a line has direction ratios ),,( cba , its direction cosines are  

  

                 

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If we have two points ),,(,),,( 222111 cbacba , then the line joining them has direction 

ratios ),,( 212121 ccbbaa   and hence direction cosines 
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The spherical angles are found from 

 

)/(tan,cos 11 lmn                                          1.2.7 

 

1.3.  Rotation of Coordinate Axes 
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FIGURE I.5 
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     Refer to figure I.5.  We draw, in black, a set of coordinate axes, xyz.  I have written 

xyz in Times New Roman italic font, and I shall refer to these axes as the “Roman” axes. 

 
    We shall often have to refer to another set of axes xyz, which I have drawn in blue.  I 

have written them in Franklin Gothic Book boldface italic font, and I shall refer to them 

as the “Franklin axes”.   

 

   The coordinates in the two systems are related by 
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in which m1 is the cosine of the angle between the x and y axes, etc.,  and ),,( 111 nml  are 

the drection cosines of the x axis rerferred to the Roman system, etc.  This is a unit 

orthogonal transformation. 

 
    We’ll suppose that the spherical angles of the z axis, referred to the Roman system, are 

).,(     From the usual relations between three-dimensional cartesian and spherical 

coordinates, these are related by: 

 

)cos,sinsin,cos(sin),,(
333

nml           1.2.9 

 
   The x axis is, of course, at right angles to the z axis (it is in the xy plane), but, further, I 

shall choose it, as in figure I.5, to be at right angles to the z axis (i.e. in the xy plane). Its 

direction cosines are ),,(
111

nml . Referred to the Roman system, its meridional angle is 

90º, and its azimuthal angle is 270º +Hence: 

 

)0,cos,(sin),,(
111

nml                                           1.2.10 

 
An easy way of determining the direction cosines and spherical angles of the y is to recall 

that, in a unit orthogonal transform, every element is equal to its own cofactor.  That is 
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That is to say 

 

                   )sin,sincos,cos(cos),,(
222

nml                                  1.2.12 
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The meridional and azimuthal angles of the y-axes are, respectively, 90º +  and The 

meridional angle is the angle between the z- and y-axes, and the cosine of this angle is n2.  

Thus we see again that  n2 is equal to  sin .     

 

  Thus the relations between the Roman and Franklin coordinates are 
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We shall be making use of these later. 


