
Draft Monday, 21 February 2005 

© M.B. Fairbairn, 2004 

Chapter 2.  Albedo 
 
1. Introduction. 
 
Albedo is a measurement, expressed as a fraction, of the amount of radiation scattered 
from a surface or an object. In this chapter we describe those albedos most commonly 
used and describe methods to calculate them in cases where analytical solutions are 
difficult, if not impossible, to obtain. In order to do this we introduce two more 
photometric quantities, namely exitance M and intensity I. A comprehensive summary 
of the photometric quantities is also presented. 
 
 
2. Scattering and Absorption. 
 
The reduction in radiance when a beam passes through a given medium by any 
process in which the radiation is converted to heat or excitation energy is called 
absorption . A process by which the radiance is reduced by redirection of part of the 
radiation (by reflection, refraction or diffraction, or by being absorbed and 
immediately re-radiated in all directions) is called scattering, for which reflectance is 
often used as a synonym. The total effect of absorption and scattering is called 
extinction, although the author prefers the less often used alternative, attenuation . 
 
3. Absorption, Scattering and Attenuation Coefficients. 
 
The decrease in radiance −dL as a beam of radiance L passes through a medium of 
thickness ds as a result of absorption is 
 

dsLdL α=−       (1) 
 
where α  is the linear absorption coefficient. With similar equations we can define the 
linear scattering coefficient σ  and the linear attenuation (extinction) coefficient ε . 
The SI units of α, σ  and ε   are m-1 and ε   =  σ + α . 
 
The mass absorption coefficient, mass scattering  coefficient and mass extinction 
coefficient each with units m2 kg-1 are defined respectively as α/ρ, σ/ρ and ε/ρ , 
where ρ  is the density (kg m-3)of the medium. Chandrasekhar uses κ  for the mass 
extinction coefficient, which, in the theory of stellar atmospheres, is also known as the 
opacity. 
 
The atomic (or molecular) absorption, scattering and extinction coefficients are 
respectively α/N, σ/N and ε /N, where N is the number density (atoms or molecules 
per unit volume), with units of m2/atom (or molecule). Because of these units the 
coefficients are often referred to as  cross-sections. 
 
4. Surfaces - Single Scattering Albedo 
 
We have already encountered a bare -boned, but nonetheless adequate, definition of 
single scattering albedo in Chapter 1. The loss of radiance from a beam of radiance L 
traversing a thickness ds of a medium is 
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dsLdsLdL )( σαε +−=−=  

 
and the single scattering albedo is that fraction of the loss which can be attributed to 
scattering alone. i.e. 
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and the single scattering albedo is thus the ratio of the scattering coefficient to the 
extinction coefficient. 
 
Single scattering albedo is the property of a surface or a layer, and may be regarded 
as the fundamental albedo, since all albedos that will be derived here from a given 
definition or reflectance rule will contain at least one instance of 0ϖ . 
 
5. Surfaces - Normal Albedo 
 
If a lossless (conservative) Lambertian reflector ( 10 =ϖ ) is irradiated normally with 

flux density F, then its radiance in any direction will be F/π.  The normal albedo 

np of a point on a surface is the ratio of the normally observed radiance to that of the 
Lambertian surface, so that 
 

)1( 0 === µµπ rn fp .    (3) 
 
The author has found two definitions of normal albedo in the literature. In one, the 
surface must be radiated normally and observed normally ( 10 == µµ ) and the other 

in which it can be irradiated from any direction, in which case np  is a function of 0µ . 
 
 
6. Net Flux and Exitance 
 
Formerly known as emittance, the exitance M  refers to a point on a reflecting or 
emitting surface and is defined as the total power emitted in all directions per unit 
physical area, so that 
 

   ∫ ∫=
π π
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where it may be seen from the limits of integration that “in all directions” means over 
a hemisphere.  The factor ϕϑϑ ddsin  is an element of solid angle, ωd  , and the 
factor ϑcos  is needed to convert the projected area of radiance back into physical 
area. Using the notation of Chapter 1., i.e. let ϑϑµϑµ dd sin,cos −== , we have  
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If we compare M to Chandrasekhar’s quantity the net flux Fπ , which, in particular, 
he uses for a plane parallel beam of radiation 
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we see that the net flux is indeed the result of  integration over all directions, i.e. over 
a sphere. It follows that net flux and exitance are not  the same thing  (although there 
may be situations in which they amount to the same), and nor does Fπ always mean 

the strength of a plane parallel beam of radiant flux density F. Indeed, we can 
calculate the net flux of a plane parallel beam incident on a surface in the direction 

),( 00 ϕµ , using the radiance of a plane parallel beam given by Chapter1, equation (7), 
as 
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−−=
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ϕµµϕϕδµµδπ
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1 00 )()( ddF F ,   (7) 

which results in 
 
    0µπ F=F ,      (8) 
 
this result being the irradiance E of the surface, as we knew it should be! 
 
 

 
7. Surfaces - Hemispherical Albedo 
  
Also known as the directional hemispherical reflectance, the hemispherical albedo ρ 
refers to a point on a reflecting surface, and is defined as the ratio of the exitance M to 
the irradiance E, so that 
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and in terms of the BRDF, we have  
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Unlike the single scattering albedo, ρ and the other albedos that we will encounter do 
not necessarily have in principle a maximum possible value of unity.  (See A Brief 
History of the Lommel-Seeliger Law).  The scattering properties of the surfaces that 
we have studied so far are summarised in Table I, from which, for the Lommel-
Seeliger law, it can be seen that the maximum possible value for ρ is ½ and 0.125 for 
the normal albedo. 
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Table I.       Properties of Surfaces 
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8. Intensity 
 
The intensity of a source in a given direction is the power radiated per unit solid angle 
about the specified direction, i.e.  
 
     ωddPI /= .               (11) 
 
The SI units are watts per steradian (W sr-1). The intensity of an element of area is 
the product of its radiance and its projected area., and the intensity of a surface in a 
given direction is the integral of the radiance over the projected area of the surface. As 
an example, the shape of an irregularly shaped asteroid can be approximated as a set 
of connected planar triangular facets; two such facets are shown in figure 1.  

 
 

Fig.1. 
 
For each facet of area kA∆  the contribution to the intensity in the direction of the 
observer is 
 
    kkkobsk ALI θcos, ∆=∆               (12) 

 
where kθ  is the angle between the surface normal vector nk and the (fixed) direction 
to the observer. The total intensity (in the direction toward the observer) of the 
asteroid is then 
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where N is the total number of facets both irradiated and visible to the observer. 
 
Of particular interest is the intensity of a sphere as a function of solar phase angle α . 
If we consider a sphere of radius a centred in an Oxyz frame with directional spherical 
coordinates ( ΦΘ, ) irradiated from the x-direction with flux density F, an element of 

surface area is ΦΘΘ dda sin2  and its projected area in the direction  µ is 

ΦΘΘ dda sin2µ . 
 

 
 

Fig. 2. 
 

The irradiance of a point ( ΦΘ,,a ) of a point on the surface is 0µF=E , where it may 
be shown that 
 

 ΦΘ= cossin0µ ,               (14) 
 
and for an observer at phase angle α  in the xy-plane 
 

 )cos(sin Φ−Θ= αµ ,               (15) 
 
in which case the intensity as a function of phase angle is given by 
 

 ΦΘΘ= ∫ ∫−
ddfaI r sin)( 0

2/

2/ 0
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π
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π
F .              (16)           

 
We will return to this equation, with more detail, in §9. 
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9.    Spheres - Bond Albedo, Phase Integral & Geometrical Albedo 
 
Originally defined for a sphere, the Bond albedo is defined as the ratio of the total 
power Pr scattered by the sphere to the total power Pi intercepted by it. 
 
If we let the intensity of the sphere as a function of solar phase angle a be I(α) watts 
per steradian, then the total scattered flux may be obtained by multiplying by 

ααπ dsin2  and integrating over α  from 0 to π  
 

∫=
π

αααπ
0

sin)(2 dIPr ,              (17) 

 
which can be expressed in terms of the normalised phase law )0(/)()( II ααψ =  
 

∫=
π
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0

sin)()0(2 dIPr .             (18) 

 
For a sphere of radius a, the intercepted flux is simply F2aPi π= , so that the Bond 
albedo may be expressed as 
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in which it may be seen as the product of two factors, the second of which, 
 

∫=
π

αααψ
0

sin)(2 dq ,              (20) 

 
is called the phase integral, which depends only on the directional reflecting 
properties of the planet. The first factor 
 

F2

)0(

a

I
p =               (21) 

 
depends only on the geometrical and photometric properties of the planet when 
observed at full phase. The quantity p is itself a (kind of) albedo since F2a  can be 
seen as the intensity, scattered back towards the source, of a normally irradiated 
lossless ( 10 =ϖ ) Lambertian disc of the same radius as the planet. The factor p is 
called the geometrical albedo. [When albedo is used without qualification in the 
context of the photometry of asteroids it (usually) means geometrical albedo, in 
particular that observed in the Johnson V -band, pV, the visual geometrical albedo]. 
 
 
For the reflectance rules we have considered so far, i.e. Lambert’s law and the 
Lommel-Seeliger law, analytical expressions for A, p and q  are readily found, as 
summarised in Table II. 
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Table II     Properties of Spheres 
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More complicated reflectance laws, in particular those which address the problem of 
the opposition effect for atmosphereless bodies do not readily lend themselves to 
analytical solutions. In general, such laws exhibit a BRDF which depends on phase 
angle α  and a possible set of reflectance parameters, symbolised by the ellipsis, so 
that the BRDF would be generally expressed in the form 
 

);,,( 0 Kαµµrr ff = ,               (22) 
 
where the dependence on ϕ  and 0ϕ  has been replaced by α , the angle between  the 
incident and scattered radiation, i.e. α  does not always mean solar phase angle. 
 
 
10. A, p and q for General Reflectance R ules );,,( 0 Kαµµrf . 
 
Again, consider a sphere of radius a centred in an Oxyz frame with corresponding 
directional spherical coordinates ( ΦΘ, ), and let the sphere be irradiated with flux 

density F from the z-direction. For the geometrical albedo the phase angle α is zero 
and the incident and reflected radiation are given by Θ== cos0 µµ , so that 
 

ΦΘΘΘΘΘ= ∫ ∫ ddfp r sincos);0,cos,(cos 22
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resulting in  
 

µµµµπ dfp r
21

0
);0,,(2 K∫= .              (24) 

 
 
Using the same geometry for the Bond albedo, for each point on the irradiated 
hemisphere we have Θ= cos0µ , so that the directional hemispherical reflectance is 
 

rr ddf φµµαµµµρ
π
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where the phase angle is that between the incident and reflected radiation at each 
stage of the integral, 

 

rφµµµµα cos)1)(1(cos 22
00 −−+= ,             (26) 

 
where 

rφ  is the azimuth of the reflected radiation. The Bond albedo is then given by 
 

∫ ∫ ΦΘΘΘΘ=
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which reduces to 

∫=
1

0
)(2 µµµρ dA .               (28) 

 
The phase integral, equation (20), may be computed from equations (14), (15) and 
(16), the factor F2a  disappearing in the process, so that we may write, for the 
purposes of computation, equation (16) as 
 

ΦΘΘ= ∫ ∫−
ddfI r sin...);,,()( 00

2/

2/ 0
µµαµµα

π

πα

π
,                (29)        

 
where it can be seen that for Φ  the range of integration is from α − π  / 2 , the limb, to 
π / 2, the terminator. 
 
In these equations it can be seen that the geometrical albedo is just a single integral 
and thus may be quickly and accurately integrated numerically with just about any 
method. The Bond albedo and the phase integral are, however, triple integrals, so that 
a method which combines the advantages of speed and accuracy is required; for this 
reason Gaussian Quadrature is the chosen method. In the following section we 
present this method in algorithmic form and discuss its application to the integrals at 
hand.  
 
For the theory and examples of Gaussian Quadrature, its performance compared to 
other methods of integration as well as tabulations of the roots and coefficients 
needed, the reader is referred to astrowww.phys.uvic.ca/~tatum/  Celestial 
Mechanics, Chap. 1. 
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11. Gaussian Triple Integral Algorithm. 
 
To approximate the integral 
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where it is assumed that the roots R and coefficients C are stored in two-dimensional 
arrays. 
 
BEGIN 
 h1 = (b – a)/2 
 h2 = (b + a)/2 
 I = 0 
 
 FOR i = 1, 2,..., m DO 
  Ix = 0 
  x = h1*R[m][i] + h2 
  k1 = (d – c)/2 
  k2 = (d + c)/2 
 
  FOR j = 1, 2,..., n DO 
   Iy = 0 
   y = k1*R[n][i] + k2 
   l1 = (f – e)/2 
   l2 = (f + e)/2 
 
   FOR k = 1, 2,..., p DO 
    z = l1*R[p][k] + l2 
    Iy = Iy + C[p][k]*F(x, y, z) 
   END FOR { k-loop } 
 
   Ix = Ix + C[n][j]*l1*Iy 
 
  END FOR { j-loop } 
 
  I = I + C[m][i]*k1*Ix 
 
 END FOR { i-loop } 
 
 I = h1*I 
 PRINT I 
END. 
 
This algorithm may be generalised further by allowing limits e and f to be functions 
e(x,y) and f(x,y) and c and d to be functions c(x) and d(x). For our 
purposes the limits of integration are fixed values. 
 
Applying this algorithm to equation (28) for the Bond albedo and identifying µ  with 
x, we see that 
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and by further identifying z with µ and y with φ  
 
   );,,(2 Kαzxxzz)y,F(x, rf= ,              (31) 
 
where α   is itself a function of x,y and z [cf. equation (26)] 
 

   y]zxxz cos)1)(1([cos 221 −−+= −α  .             (32) 
 
For the phase integral, there is no need to invoke the likes of equation (32) since the 
intensity I(α) is explicitly expressed in terms of α  and one stage of the integration is 
with respect to α. The parameters, … , are, of course, not variables since they retain 
their values for the duration of the integration. 
 
When applying these integrals it is strongly suggested that A, p and q each be 
calculated independently in order to verify that the relationship A = p q holds. Taking 
shortcuts may bury insidious bugs, some possibly as simple as a typo., inside a 
program and result in at least two undetected erroneous results. 
 
 
12. Summary of Photometric Quantities 
 
With this chapter we have completed the description of the basic photometric 
quantities used in planetary photometry (although we have yet to embrace 
magnitude). These are summarised in Table III, in which those names in the first 
column correspond to those in standard usage, the exception being flux density F. 
The third and fourth columns correspond to standard symbols and units. In the second 
column may be found some names commonly, and not so commonly, used in 
astronomical literature. 
 

 
 
The author has seen the term “collimated intensity” used by only one author (Hapke) 
when referring to a plane parallel beam, and he finds it a more meaningful term than 
“flux density”, so much so that in standard usage the term “collimated radiance” 
would make a splendid alternative.  
 

Table III.   Photometric Quantities 

Name Synonyms Symbol SI Units 

Radiant Flux Radiant Power P , Φ  W 
Radiant Flux Density Collimated Intensity F W·m–2 

Irradiance Insolation E  W·m–2 
Exitance Emittance M  W·m–2 

 
Radiance 

Surface Brightness 
Specific Intensity 

Intensity 

 
L 

 
W·m–2sr–1 

Intensity Integrated Brightness I  W·sr–1 
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The symbols have been used in their most general sense, without any subscripting or 
other embellishments so that e.g. L could mean λL , the radiance in the wavelength 

interval [ λλλ d+, ], or VL , the “visual radiance” in the Johnson V-band or indeed it 
could mean the radiance integrated over all wavelengths, the “bolometric radiance”. 
 
 
Reference Notes. 
 
Much of the content of this chapter is an adaptation from, and an extension to, the 
Theory of Planetary Photometry  by 
 
1. Lester. P. L., McCall, M. L. & Tatum, J. B., 1979, J. Roy. Astron. Soc. Can ., 
 73, 233. 
 
Further definitions, and interesting insights into the photometric quantities and 
standard usage may be found in the above reference, as well as in 
 
2. astrowww.phys.uvic.ca/~tatum/ Stellar Atmospheres, Chap. 1. 
 
Sections 9 and 10 are based on an article by the author 
 
3. Fairbairn, M. B., 2004,  J. Roy. Astron. Soc. Can., 98 , 149 
 
in which a numerical example may be found in the appendix. 
 
 
 
 


