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CORNU’S SPIRAL 

 

   If a parallel beam of light from a distant source encounters an obstacle, the shadow of 

the obstacle is not a simple geometric shadow but is, rather, a diffraction pattern.  For 

example, it is well known that the diffraction pattern formed by a slit looks like the 

function shown in figure 1. 

 

FIGURE 1

 
Such diffraction is called Fraunhofer diffraction. 

 

   If, however, the source of light is not distant, but is close to the diffracting obstacle so 

that the incident waves are not plane waves, the diffraction pattern will look somewhat 

different.  Such diffraction is called Fresnel diffraction, and its theory is, unsurprisingly, 

a little more difficult than the theory for Fraunhofer diffraction. 

 

  If the source of light is a point source, so that the incident wavefronts are spherical, the 

detailed quantitative theory is not at all easy.  If the incident wavefronts, however, are 

cylindrical (say from a linear source) the analysis, which is two dimensional, is a little 

more tractable.  Cornu’s spiral is a graphical device that enables us to compute and 

predict the Fresnel diffraction pattern from various simple obstacles.   

 

  “Cornu”, by the way, is French for “horned”, and can also mean “spiral” - i.e. like the 

horns of a bighorn sheep or of an ibex.  Because of this I wondered, when I first heard 

about Cornu’s spiral, whether it should really be called a “cornu spiral”, rather than 

Cornu’s spiral.  However, it is correctly named Cornu’s spiral after a real nineteenth 
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century French scientist, Marie Alfred Cornu.  The mathematical properties of the spiral 

had been examined by various mathematicians (for example, Euler) before Cornu, but it 

has acquired the name of Cornu because of its application by Cornu to the theory of 

Fresnel diffraction. 

 

 

   Let us look, in figure 2, at the geometry of a cylindrical wavefront from a linear source 

at O. 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Introduce a dimensionless variable v by 
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where λ is the wavelength of the light. 

 

   Theory shows that the intensity (square of the amplitude) of the radiation received at 

the point P0 from the portion AB of arc-length s of the wavefront is proportional to 
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are the Fresnel integrals. 
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   The derivation of  equation (3) may be somewhat heavy-going, and we shall relegate it 

to Appendix A at the end of this chapter.  For the time being, we shall accept equation (3) 

as being correct, and we shall see how to use it to construct the Cornu spiral and how the 

spiral can be used to compute the forms of the shadows produced by various obstacles. 

 

 

   In equations (4), u is just a dummy variable.  C and S are functions of v, which is 

proportional to s.  They must be integrated numerically, and I have provided a brief table 

of them in Appendix B. 

 

   The Cornu spiral is a graph of S versus C.   Figure 3 shows such a graph.  Better ones 

exist in the literature, but this one will suffice to show how it is used.   However, I shall 

shortly suggest that, while it is fun to use the spiral, for precise work it is preferable to 

compute the forms of the shadows numerically rather than graphically.  The spiral was 

useful in the days before high-speed computers, but today one can compute the Fresnel 

integrals instantaneously, and hence we can compute the forms of the shadow, using the 

spiral perhaps to guide us.  A word of warning, though.  The rapid and accurate 

computation of the Fresnel integrals requires some care in programming, for the 

integrand changes rapidly with the variable u.  In preparing the graphs and tables in this 

note, I found that Simpson’s Rule was inadequate - it worked provided I used a large 

number of intervals, but this slowed down the computation.  I was able to get better and 

faster results with Gaussian quadrature. 

 

   The dimensionless variable v (which is proportional to s - see equation 1) is measured 

along the spiral.  I have drawn dots on the spiral for every 0.1 increment in v.  I haven’t 

labelled the numerical values of v beside the dots, but feel free to do so if you wish.  

Note that, as  .and,
2
1±→∞±→ SCv    The intensity at P is proportional to the 

square of the distance between these two limiting points ),(and),(
2
1

2
1

2
1

2
1 −− .  The 

distance between these points is 2 , and the square of the distance is 2.  Thus, with no 

obstacle between the source and the point P, the amplitude of the radiation at P is 2  

(arbitrary units), and the intensity at P is 2 (arbitrary units). 
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FIGURE 3 
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In what follows, we are going to put three obstacles in front of the light source and we are 

going to compute the Fresnel diffraction pattern (i.e. the structure of the shadow.)  The 

three obstacles will be a single straight edge, a slit between two straight edges, and an 

opaque strip: 

 

     

 

 

 

 

 

 

 

 

   All the time recall that the distance s along the wavefront is linearly related to the 

distance v along the Cornu spiral. 

 

We’ll start with the single straight edge. 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  At the point P0 we see all of the upper part of the wavefront.  That is, we see along the 

Cornu spiral from 0=v  to where the spiral converges at 
2
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2
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of the radiation at P is proportional to the distance between these two points, which is 

2/1 , and the intensity at P is proportional to the square of this, which is 
2
1 , which is 

one quarter of the intensity when the light was unobstructed by any obstacle. 

 

   Now let us see what the intensity is at a point P some way above the axis (figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The distance s is must now be measured not from the edge of the obstacle, but from the 

point Q.  At P we see more of the wavefront than we did at P0.  We see all of s above Q, 

as well as some negative values of s below Q.  The amplitude at P, then, corresponds to 

the length of the chord in figure 6, in which the negative v is related to the negative s by 

equation (1).  We see that, as we move P upwards in figure 5, We take in more and more 

negative s, and more and more negative v in the Cornu spiral. 
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   Thus, as P moves upwards in figure 5, we keep the upper end of the chord in figure 6 

fixed and we move the lower end around the spiral.  The length of the chord is 

proportional to the amplitude of the light received at P, and its square is proportional to 

its intensity.    

 

   We can use a ruler and the spiral to determine the intensity as a function of v and hence 

of s, and this would have been an appropriate procedure before the advent of high-speed 

computers.  To delineate the intensity as a function of v by computer, as we move along 

the spiral, for each value of v we calculate C and S and then calculate the intensity from 

the square of the length of the chord, which is ( ) ( )2

2
12

2
1 SC −+− .   This is what I did 

for figure 7 except that I divided this expression by two, so that an intensity of one 
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represents the intensity at P0 in the absence of any obstacle.   A reader who tries to 

duplicate this will soon appreciate the value of programming a fast and accurate method 

of evaluating the Fresnel integrals. 

 

   The portion to the right of v = 0 is within the geometric shadow. 

 

 
FIGURE 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

   Now we’ll look at what happens when the obstacle is a slit between two straight 

edges.   We’ll suppose that the width of the slit is ∆s, corresponding to a distance along 

the spiral .
)(2

s
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ba
∆

λ

+
=∆v   In the calculations that I have done below, I have taken 

∆v to be 4.0.   The point P (see figure 8) is receiving energy from the part of the 

wavefront between ss ∆−  and s, corresponding to a chord on the spiral spanning a 

distance ∆v along the spiral.  As the point P moves upward along the screen, so the chord 

slides along the spiral (see figure 9), keeping v∆ constant. 
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   For each position of the chord, we need to calculate the Fresnel integrals Cu , Su of the 

upper end of the chord and the Fresnel integrals  Cl , Sl of the lower end of the chord and 
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then calculate the square of the length of the chord (and then divide by two, so that an 

intensity of 1 is the intensity when the light is unobstructed).  That is, we calculate 

( ) ( )[ ]22

2
1

lulu SSCC −+− . 

 

I got the result shown in figure 10, using a slit width corresponding to ∆v = 4. 
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FIGURE 10 

 

 

 

   The positions 2±=v  correspond to the edge of he geometric shadow.  The intensity 

has not fallen to zero there - some light spills over into the geometric shadow. 

 

   The details of the diffraction pattern are very sensitive to the value of  ∆v.  That is to 

say to ∆s.  That is to say to the slit width.  Figure 11, for example, shows the same 

calculation but for ∆v = 3.9 rather than 0.4. 
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FIGURE 11 

  

    As the slit width is changed, sometimes there will be a dip at v = 0, and sometimes a 

maximum.  Generally, a large ∆v results in a more complicated pattern, and a smaller ∆v 

results in a simpler pattern.  As ∆v becomes smaller, the pattern approaches the familiar 

Fraunhofer diffraction pattern for a slit, as in figure.1. 

 

 

 

     Now let us choose as the obstacle a single opaque strip.  I’ll make the width of the 

strip equal to the width of the slit in the example of figure 10, which corresponds to a 

distance along the spiral of  ∆v = 4.  Instead of sliding the chord of figure 10 along the 

spiral, we have to slide the two complementary chords shown in figure 12.  We have to 

calculate the same Fresnel integrals Cu , Su, Cl , Sl as before, but this time the resultant of 

the two, added as vectors, and normalized so that the unobstructed intensity is 1, is 

( ) ( )[ ]22

2
1 11 lulu SSCC +−++− .  I obtain the result shown in figure 13. 
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FIGURE 13

 
 

 

    The key to doing these calculations successfully is to have an efficient, fast and 

accurate routine for calculating the Fresnel integrals.  In each of these graphs each of the 

Fresnel integrals (sine and cosine) was calculated by numerical integration about 400 

times.  I found Simpson’s Rule was inadequate, so I used Gaussian Quadrature.  (For 

those unfamiliar with these techniques, they are described in my notes on Celestial 

Mechanics,   http://orca.phys.uvic.ca/~tatum/celmechs/celm1.pdf  )  
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APPENDIX A 

 

   In the above notes I have described what the Fresnel integrals and the Cornu spiral are, 

and how to use them in some simple cases.  I have not shown why it is that the diffraction 

patterns can be generated by the Fresnel integrals, or how to derive equation (3).  I hope 

sometime to derive this and explain the rationale behind the theory in this Appendix at 

some later date.  I’m afraid I can’t say when I expect to get round to doing this.  Could be 

this year, next year, sometime, never... 

 

APPENDIX B 

 

The Fresnel Integrals 

 

v           C           S 

 

0.10      0.1000      0.0005 

0.20      0.1999      0.0042 

0.30      0.2994      0.0141 

0.40      0.3975      0.0334 

0.50      0.4923      0.0647 

0.60      0.5811      0.1105 

0.70      0.6597      0.1721 

0.80      0.7228      0.2493 

0.90      0.7648      0.3398 

1.00      0.7799      0.4383 

1.10      0.7638      0.5365 

1.20      0.7154      0.6234 

1.30      0.6385      0.6863 

1.40      0.5431      0.7135 

1.50      0.4453      0.6975 

1.60      0.3655      0.6389 

1.70      0.3238      0.5492 

1.80      0.3336      0.4509 

1.90      0.3945      0.3733 

2.00      0.4883      0.3434 

2.10      0.5816      0.3743 

2.20      0.6363      0.4557 

2.30      0.6266      0.5532 

2.40      0.5550      0.6197 

2.50      0.4574      0.6192 

2.60      0.3889      0.5500 

2.70      0.3925      0.4529 

2.80      0.4675      0.3915 

2.90      0.5624      0.4101 

3.00      0.6057      0.4963 

3.10      0.5616      0.5818 
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3.20      0.4663      0.5933 

3.30      0.4057      0.5193 

3.40      0.4385      0.4296 

3.50      0.5326      0.4152 

3.60      0.5879      0.4923 

3.70      0.5419      0.5750 

3.80      0.4481      0.5656 

3.90      0.4223      0.4752 

4.00      0.4984      0.4205 

4.10      0.5737      0.4758 

4.20      0.5417      0.5632 

4.30      0.4494      0.5540 

4.40      0.4383      0.4623 

4.50      0.5260      0.4343 

4.60      0.5672      0.5162 

4.70      0.4914      0.5671 

4.80      0.4338      0.4967 

4.90      0.5002      0.4351 

5.00      0.5636      0.4992 

5.10      0.4998      0.5624 

 

 

 

 

 

 


