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CHAPTER 1 

REFLECTION AND REFRACTION 

 

 

 

1.1   Introduction 

 

This “book” is not intended to be a vast, definitive treatment of everything that is known 

about geometric optics.  It covers, rather, the geometric optics of first-year students, 

whom it will either help or confuse yet further, though I hope the former.  The part of 

geometric optics that often causes the most difficulty, particularly in getting the right 

answer for homework or examination problems, is the vexing matter of sign conventions 

in lens and mirror calculations.  It seems that no matter how hard we try, we always get 

the sign wrong!  This aspect will be dealt with in Chapter 2.  The present chapter deals 

with simpler matters, namely reflection and refraction at a plane surface, except for a 

brief foray into the geometry of the rainbow.  The rainbow, of course, involves refraction 

by a spherical drop.  For the calculation of the radius of the bow, only Snell’s law is 

needed, but some knowledge of physical optics will be needed for a fuller understanding 

of some of the material in section 1.7, which is a little more demanding than the rest of 

the chapter. 

 

 

1.2   Reflection at a Plane Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

The law of reflection of light is merely that the angle of reflection r is equal to the angle 

of incidence i.  There is really very little that can be said about this, but I’ll try and say 

what little need be said. 

 

 

   i.   It is customary to measure the angles of incidence and reflection from the normal to 

the reflecting surface rather than from the surface itself. 

i r 

FIGURE I.1 
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  ii.   Some curmudgeonly professors may ask for the lawS of reflection, and will give 

you only half marks if you neglect to add that the incident ray, the reflected ray and the 

normal are coplanar. 

 

   iii.   A plane mirror forms a virtual image of a real object: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or a real image of a virtual object: 
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   iv.  It is usually said that the image is as far behind the mirror as the object is in front of 

it.  In the case of a virtual object (i.e. light converging on the mirror, presumably from 

some large lens somewhere to the left) you’d have to say that the image is as far in front 

of the mirror as the object is behind it! 

 

   v.   If the mirror were to move at speed v away from a real object, the virtual image 

would move at speed 2v.  I’ll leave you to think about what happens in the case of a 

virtual object. 

 

  vi.   If the mirror were to rotate through an angle θ (or were to rotate at an angular speed 

ω), the reflected ray would rotate through an angle 2θ (or at an angular speed 2ω). 

 

 

  vii.  Only smooth, shiny surfaces reflect light as described above.  Most surfaces, such 

as paper, have minute irregularities on them, which results in light being scattered in 

many directions.  Various equations have been proposed to describe this sort of 

scattering.  If the reflecting surface looks equally bright when viewed from all directions, 

the surface is said to be a perfectly diffusing Lambert’s law surface.  Reflection 

according to the r = i law of reflection, with the incident ray, the reflected ray and the 

normal being coplanar, is called specular reflection (Latin:  speculum, a mirror).  Most 

surfaces are intermediate between specular reflectors and perfectly diffusing surfaces.  

This chapter deals exclusively with specular reflection. 

 

viii.   The image in a mirror is reversed from left to right, and from back to front, but is 

not reversed up and down.  Discuss. 

 

ix.  If you haven’t read Through the Looking-glass and What Alice Found There, you are 

missing something. 

 

x.    
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Light goes from A to B via reflection from a point P in a mirror. 

 

The distance s travelled is given by 

 

.2)(222
xbaxas −+++=    1.2.1 

 

Here is the distance travelled as a function of the position of the point P: 
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The path that the light actually takes is the path such that the distance travelled is a 

minimum, which is such that P is horizontally halfway between A and B. You can see 

this from the graph, or by differentiating the above expression for s.  This means that the 

angle of reflection is equal to the angle of incidence.  You may regard this observation as 

a slightly interesting trivium, or as a fundamental principle of the deepest significance.  

Whichever you choose, you will come across lots of other examples of nature operating 

with Least Action.  And you won’t have to wait long.  There’s another one in the next 

section. 
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1.3   Refraction at a Plane Surface 

 

     I was taught Snell’s Law of Refraction thus: 

 

     When a ray of light enters a denser medium it is refracted towards the normal in such 

a manner than the ratio of the sine of the angle of incidence to the sine of the angle of 

refraction is constant, this constant being called the refractive index n. 

   

 

 

 

 

 

 

 

 

 

 

 

 

This is all right as far as it goes, but we may be able to do better. 

 

  i.  Remember the curmudgeonly professor who will give you only half marks unless you 

also say that the incident ray, the refracted ray and the normal are coplanar. 

 

  ii.  The equation  

 

     ,
sin

sin
n

r

i
=      1.3.1 

 

where n is the refractive index of the medium, is all right as long as the light enters the 

medium from a vacuum.  The refractive index of air is very little different from unity.  

Details on the refractive index of air may be found in my notes on Stellar Atmospheres 

(chapter 7, section 7.1) and Celestial Mechanics (subsection 11.3.3). 

 

If light is moving from one medium to another, the law of refraction takes the form 

 

    .sinsin 2211 θ=θ nn      1.3.2 
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iii.  The statement of Snell’s law as given above implies, if taken literally, that there is a 

one-to-one relation between refractive index and density.  There must be a formula 

relating refractive index and density.  If I tell you the density, you should be able to tell 

me the refractive index.  And if I tell you the refractive index, you should be able to tell 

me the density.  If you arrange substances in order of increasing density, this will also be 

their order of increasing refractive index. 

 

This is not quite true, and, if you spend a little while looking up densities and refractive 

indices of substances in, for example, the CRC Handbook of Physics and Chemistry, you 

will find many examples of less dense substances having a higher refractive index than 

more dense substances.  It is true in a general sense usually that denser substances have 

higher indices, but there is no one-to-one correspondence. 

 

In fact light is bent towards the normal in a “denser” medium as a result of its slower 

speed in that medium, and indeed the speed v of light in a medium of refractive index n 

is given by 

  

     ,/vcn =      1.3.3 

 

where c is the speed of light in vacuo.  Now the speed of light in a medium is a function 

of the electrical permittivity ε and the magnetic permeability µ: 

 

     ./1 εµ=v      1.3.4 

 

The permeability of most nonferromagnetic media is very little different from that of a 

vacuum, so the refractive index of a medium is given approximately by 

 

     .
0ε

ε
≈n      1.3.5 

 

Thus there is a much closer correlation between refractive index and relative permittivity 

(dielectric constant) than between refractive index and density.  Note, however, that this 

is only an approximate relation.  In the detailed theory there is a small dependence of the 

speed of light and hence refractive index on the frequency (hence wavelength) of the 

light.  Thus the refractive index is greater for violet light than for red light (violet light is 

refracted more violently).  The splitting up of white light into its constituent colours by 

refraction is called dispersion. 
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Here is a ray of light travelling from one medium to another: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

It moves faster in the upper medium than in the lower medium. 

 

Time taken to get from A to B: 
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That is: 
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Here is the time taken as a function of the position of P, calculated for .5.1/ 12 =nn  
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As you see, it goes through a minimum.  You can find where it is by differentiating 

equation 1.3.7: 

 

,sinsin
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c    1.3.8 

 

This is zero when 0sinsin 2211 =θ−θ nn   Thus Snell’s law is such that the path 

actually taken is the path that takes the shortest time.  Trivial, or profound? 

 

 

Huygens’ Construction 

 

Here is a wavefront moving upwards.  “Light “rays” are normals to the wavefront. 

 

 

     

 

 

 

 

 

Huygens’ construction is a way of prediction what will happen next.  It says that you can 

imagine every point on the wavefront to be a source that generates a little wavelet.  Then, 
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after a little time the wavelets look like this - and the new wavefront is the common 

tangent to all the wavelets. 

 

     

 

 

 

 

 

    This may sound trivial at first, although much has been written about it - i.e. whether it 

represents reality, or is merely a convenient construction.  And, if real, what happens to 

the wavelets in the backwards direction?  We’ll not pursue that here, but we can use the 

Huygens construction as an interesting way to think about Snell’s law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A beam of light of wavelength λ1 is approaching a glass block from the left at speed v1.  

The dashed lines represent the wavefronts.  Ray A reaches the block first, at P.  A 
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wavelet is generated at P, moving with speed v2.    The drawing is made for the instant 

when ray B reaches the point Q.  The new wavefront is the tangent from Q to the little 

wavelet that started at P.  The geometry will show that 
1

2

2

1

2

1

n

n
==

λ

λ

v

v
and therefore 

.sinsin 2211 θ=θ nn  

 

 

Refraction through a glass block 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 
  Figure I.6 shows a ray of light passing through a rectangular glass block of thickness t 

and refractive index n (taken to be 1.5 in the drawing).   The normal to the surface of the 

block makes an angle θ with the incoming ray.  It is a matter of simple geometry (do it!) 

to show that the lateral displacement h of the ray is given by 

    ),tancos(sin φθ−θ= th     1.3.6 

 

where φ is the angle of refraction, given by .sinsin φ=θ n   In terms of θ, n and t, this is 

 

    .
sin

cos
1sin

22 
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n
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   Figure I.7 is drawn for n = 1.5. 
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   One might imagine making use of this to measure the distance between two points 

close together.  For example suppose that you have a photograph of some stars on an old 

photographic plate, and it includes a close pair of stars, and you want to measure the 

distance between the two star images.  (Today the photograph would be on a CCD 

detector, and the distance between the two images would be recorded electronically, 

which is why I specify an old photographic plate.)   You look at the photograph through a 

microscope and see one of the stars bisected by a crosshair in the microscope eyepiece.  

But you have a glass plate in front of the photograph, and you tilt the plate in order to 

displace the images so that the images move and the second star is now bisected by the 

crosshair.  From the large angle through which you tilt the plate you can work out the tiny 

distance between the two images.  You’ll want to use monochromatic light, and you’d 

need to know the refractive index at that wavelength.  How will you measure the angle 

through which the plate has turned?  Well, you could shine a laser beam off it; the 

reflected light will move at twice the speed of the plate, and you could let it illuminate a 

sheet of graph paper several feet away.  Thus the tiny distance between the images will 

correspond to a large distance on the graph paper.  There may be one or two other 

practical details that you’d want to think about.  For example, how thick would you want 

the glass plate to be?  A thin microscope slide, maybe, or something much thicker than 

that?  Would it be better to work at angles θ less than about 40º where the slope of figure 

I.7 is small, or at angles greater than 50º where the slope is larger? 
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    You might also wish to move a laser beam sidewise through a small and controlled 

amount.  You could put a glass block on a turntable which could be rotated through a tiny 

measurable angle and thus move the laser beam laterally and accurately through a very 

tiny amount. 

 

   Let’s continue with the glass block.  Show that, if the glass block were to be rotated 

counterclockwise with angular speed ω, the laser beam would move upwards at a speed 

 

  .
)sin(

sinsin2
cos

2/322

4222

ω








θ−

θ+θ−
−θ=

n

nn
th&         1.3.8 

 

If we write θ−θ 22 cos1assin , we’ll be  able to express this entirely in terms of θcos .  

And if, for illustrative purposes, I take n = 1.5, the equation becomes 

 

    ,
)25.1(

5.225.1
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t
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+=
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    1.3.9 

 

where .cos θ=c    For ease in computation, I’ll set  2cC = .  Equation 1.3.9 then 

becomes 

 

   .
)25.1(

)5.2(25.1
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    1.4.0 

 

This is easy to compute, and the result is shown in the graph below. 
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   We see, perhaps to our surprise, that h& goes through a maximum at about θ  =  79º. 

To obtain equation 1.3.9, we had to differentiate equation 1.3.7.  Now, to find out where 

h&  goes through a maximum, we are going to have to differentiate again, although 

mercifully we can differentiate equation 1.4.0 with respect to C rather than to θ.  If we do 

this, and then set the derivative to zero, we find, after some simplification,  

  

2/5

2

2/1 )25.1(

5.025.15

2

1

C

CC

C +

++
=                   1.4.1        

 

If we square this and collect powers of C, we arrive at a quartic equation in C: 

 

02562176624017980625 432 =+−−− CCCC . 

 

where .cos22 θ== cC  

 

The solution to this equation is  C   =   0.034 346 549 0, corresponding to 

 

θ  =   79º.319 731 1 

     

 

 

1.4     Real and Apparent Depth 

 

When we look down into a pool of water from above, the pool looks less deep than it 

really is.  Figure I.6 shows the formation of a virtual image of a point on the bottom of 

the pool by refraction at the surface. 
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The diameter of the pupil of the human eye is in the range 4 to 7 mm, so, when we are 

looking down into a pool (or indeed looking at anything that is not very close to our 

eyes), the angles involved are small.  Thus in figure I.6 you are asked to imagine that all 

the angles are small; actually to draw them small would make for a very cramped 

drawing.  Since angles are small, I can approximate Snell’s law by 

 

     
θ

θ
≈

tan

'tan
n      1.4.1 

 

and hence  

 

   .
tan

'tan

'depthapparent

depthreal
n

h

h
=

θ

θ
==    1.4.2 

 

 

For water, n is about 3
4 , so that the apparent depth is about ¾ of the real depth. 

 

Exercise.  An astronomer places a photographic film, or a CCD, at the primary focus of a 

telescope.  He then decides to insert a glass filter, of refractive index n and thickness t, in 

front of the film (or CCD).  In which direction should he move the film or CCD, and by 

how much, so that the image remains in focus? 

 

 

Now if Snell’s law really were given by equation 1.4.1, all refracted rays from the object 

would, when produced backwards, appear to diverge from a single point, namely the 

virtual image.  But Snell’s law is really ,
sin

'sin

θ

θ
=n  so what happens if we do not make 

the small angle approximation? 

 

We have 
θ

θ
=

tan

'tan

'h

h
and, if we apply the trigonometric identity 

θ−

θ
=θ

2sin1

sin
tan  

and apply Snell’s law, we find that 

 

      .

sin1

cos

' 22 θ−

θ
=

n

n

h

h
    1.4.3 

 

Exercise.   Show that, to first order in θ this becomes h/h' = n. 

 

Equation 1.4.3 shows h' as a function of θ  −   and that the refracted rays, when projected 

backwards, do not all appear to come from a single point.  In other words, a point object 

does not result in a point image.  Figure I.7 shows (for n = 1.5 – i.e. glass rather than 

water) the backward projections of the refracted rays for θ' = 15, 30, 45, 60 and 75 

degrees, together with their envelope or “caustic curve”.  The “object” is at the bottom 

left corner of the frame, and the surface is the upper side of the frame. 
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Exercise (for the mathematically comfortable).  Show that the parametric equations for 

the caustic curve are 

 

    0tan'tan =θ−θ− hyx     1.4.4 

 

and    .0sec'sec 33 =θ+θ hny     1.4.5 

 

Here,  y = 0 is taken to be the refracting surface, and θ and θ' are related by Snell’s law. 

   

 

Thus refraction at a plane interface produces an aberration in the sense that light from a 

point object does not diverge from a point image.  This type of aberration is somewhat 

similar to the type of aberration produced by reflection from a spherical mirror, and to 

that extent the aberration could be referred to as “spherical aberration”.  If a point at the 

bottom of a pond is viewed at an angle to the surface, rather than perpendicular to it, a 

further aberration called “astigmatism” is produced.  This will be discussed in Chapter 4. 
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1.5    Reflection and Refraction 

 

We have described reflection and refraction, but of course when a ray of light encounters 

an interface between two transparent media, a portion of it is reflected and a portion is 

refracted, and it is natural to ask, even during an early introduction to the subject, just 

what fraction is reflected and what fraction is refracted.  The answer to this is quite 

complicated, for it depends not only on the angle of incidence and on the two refractive 

indices, but also on the initial state of polarization of the incident light; it takes us quite 

far into electromagnetic theory and is beyond the scope of this chapter, which is intended 

to deal largely with just the geometry of reflection and refraction.  However, since it is a 

natural question to ask, I can give explicit formulas for the fractions that are reflected and 

refracted in the case where the incident light is unpolarized. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.8 shows an incident ray of energy flux density (W m
−2

 normal to the direction of 

propagation) FI arriving at an interface between media of indices n1 and n2.  It is 

subsequently divided into a reflected ray of flux density FR and a transmitted ray of flux 

density FT.  The fractions transmitted and reflected (t and r) are 
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and 
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Here the angles and indices are related through Snell’s law, equation 1.3.2.   If you have 

the energy, show that the sum of these is 1. 

 

Both the transmitted and the reflected rays are partially plane polarized.  If the angle of 

incidence and the refractive index are such that the transmitted and reflected rays are 

perpendicular to each other, the reflected ray is completely plane polarized – but such 

details need not trouble us in this chapter. 
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Figure I.9 shows the reflection coefficient as a function of angle of incidence for 

unpolarized incident light with n1 = 1.0  and n2 = 1.5 (e.g. glass).  Since n2 > n1, we have 

external reflection.  We  see that for angles of incidence less than about 45 degrees, very 

little of the light is reflected, but after this the reflection coefficient increases rapidly with 

angle of incidence, approaching unity as θ1 → 90
o
 (grazing incidence). 

 

If n1 = 1.5 and n2 = 1.0, we have internal reflection, and the reflection coefficient for this 

case is shown in figure I.10.  For internal angles of incidence less than about 35
o
, little 

I.9 
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light is reflected, the rest being transmitted.  After this, the reflection coefficient increases 

rapidly, until the internal angle of incidence θ1 approaches a critical angle C, given by 

 

    ,sin
1

2

n

n
C =       1.5.3 

 

This corresponds to an angle of emergence of 90
o
.  For angles of incidence greater than 

this, the light is totally internally reflected.   For glass of refractive index 1.5, the critical 

angle is 41
o
.2, so that light is totally internally reflected inside a 45

o
 prism such as is used 

in binoculars. 
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1.6   Refraction by a Prism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.11 shows an isosceles prism of angle α,  and a ray of light passing through it.  I 

have drawn just one ray of a single colour.  For white light, the colours will be dispersed, 

the violet light being deviated by the prism more than the red light.  We’ll choose a 

wavelength such that the refractive index of the prism is n.  The deviation D of the light 

from its original direction is θ1 − φ1  +  θ2 − φ2 .   I want to imagine, now, if we keep the 

incident ray fixed and rotate the prism, how does the deviation vary with angle of 

incidence θ1?  By geometry, φ2 =  α − φ1, so that the deviation is    

 

    .21 α−θ+θ=D      1.6.1 

 

Apply Snell’s law at each of the two refracting surfaces: 

 

   ,
)sin(
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sin
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1 nn =
φ−α

θ
=

φ

θ
           1.6.2a,b 

 

and eliminate φ1: 

 

      .sincossinsinsin 11

22

2 θα−θ−α=θ n    1.6.3. 
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Equations 1.6.1 and 1.6.3 enable us to calculate the deviation as a function of the angle of 

incidence θ1.  The deviation is least when the light traverses the prism symmetrically, 

with θ1 =  θ2, the light inside the prism then being parallel to the base.  Putting θ1 =  θ2 in 

equation shows that minimum deviation occurs for an angle of incidence given by 

 

       .sin
)cos1(2

sin
sin

2
1

1 α=
α+

α
=θ n

n
   1.6.4 

 

The angle of minimum deviation Dmin is 2θ1 − α, where θ1 is given by equation 1.6.4, and 

this leads to the following relation between the refractive index and the angle of 

minimum deviation: 

 

    .
sin

)(sin

2
1

min2
1

α

α+
=

D
n     1.6.5 

 

 

Of particular interest are prisms with α  =  60
o
 and α  =  90

o
.  I have drawn, in figure I.12 

the deviation versus angle of incidence for 60- and 90-degree prisms, using (for reasons I 

shall explain) n = 1.31, which is approximately the refractive index of ice.  For the 60
o
 ice 

prism, the angle of minimum deviation is 21
o
.8, and for the 90

o
 ice prism it is 45

o
.7. 
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The geometry of refraction by a regular hexagonal prism is similar to refraction by an 

equilateral (60
o
) triangular prism (figure I.13): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When hexagonal ice crystals are present in the atmosphere, sunlight is scattered in all 

directions, according to the angles of incidence on the various ice crystals (which may or 

may not be oriented randomly).  However, the rate of change of the deviation with angle 

of incidence is least near minimum deviation;  consequently much more light is deviated 

by 21
o
.8 than through other angles.  Consequently we see a halo of radius about 22

o
 

around the Sun. 

 

Seen sideways on, a hexagonal crystal is rectangular, and consequently refraction is as if  

through a 90
o
 prism (figure I.14): 
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Again, the rate of change of deviation with angle of incidence is least near minimum 

deviation, and consequently we may see another halo, of radius about 46
o
.  For both 

haloes, the violet is deviated more than the red, and therefore both haloes are tinged 

violet on the outside and red on the inside. 

 

 

1.7    The Rainbow 

 

I do not know the exact shape of a raindrop, but I doubt very much if it is drop-shaped!  

Most raindrops will be more or less spherical, especially small drops, because of surface 

tension.  If large, falling drops are distorted from an exact spherical shape, I imagine that 

they are more likely to be flattened to a sort of horizontal pancake shape rather than drop-

shaped.  Regardless, in the analysis in this section, I shall assume drops are spherical, as I 

am sure small drops will be. 

 

We wish to follow a light ray as it enters a spherical drop, is internally reflected, and 

finally emerges.  See figure I.15.  We shall refer to the distance b as the impact 

parameter. 
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We see a ray of light headed for the drop, which I take to have unit radius, at impact 

parameter b.  The deviation of the direction of the emergent ray from the direction of the 

incident ray is 

 

  .'42''2' θ−θ+π=θ−θ+θ−π+θ−θ=D   1.7.1 

 

However, we shall be more interested in the angle r  =  π  −  D.  A ray of light that has 

been deviated by D will approach the observer from a direction that makes an angle r 

from the centre of the bow, which is at the anti-solar point (figure I.16): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We would like to find the deviation D as a function of impact parameter.  The angles of  

incidence and refraction are related to the impact parameter as follows: 

 

    ,sin b=θ       1.7.2 

 

    ,1cos 2
b−=θ      1.7.3 

 

    ,/'sin nb=θ      1.7.4 

 

and    ./1cos 22
nb−=θ      1.7.5 
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FIGURE I.16 
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These, together with equation 1.7.1, give us the deviation as a function of impact 

parameter.  The deviation goes through a minimum – and r goes through a maximum.  

The deviation for a light ray of impact parameter b is 

 

   )./(sin4sin2 11 nbbD −− −+π=    1.7.6 

 

 The angular distance r from the centre of the bow is r =  π − D, so that 

 

   .sin2)/(sin4 11 bnbr −− −=     1.7.7 

 

This is shown in figure I.17 for n = 1.3439 (blue -   λ = 400 nm) and n = 1.3316 (red -   λ 

= 650 nm). 
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FIGURE I.17

  
 

Differentiation gives the maximum value, R,  of r  - i.e. the radius of the bow – or the 

minimum deviation Dmin.  We obtain for the radius of the bow 

 

   .
3
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sin2

3

4
sin4

2
1
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2
1 n

n

n
R

−
−

−
= −−    1.7.8 

 

For n = 1.3439 (blue) this is 40
o
 31' and for n =  1.3316 (red) this is 42

o
 17'.  Thus the 

blue is on the inside of the bow, and red on the outside. 
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For grazing incidence (impact parameter = 1), the deviation is ),/1(sin42 1 n−−π or 

'40167o  for blue or 165
o
 18' for red.  This corresponds to a distance from the centre of 

the bow ,)/1(sin4 1 π−= − nr  which is '2012o  for blue and 14
o
 42' for red.   It will be 

seen from figure I.17 that for radii less than R (i.e. inside the rainbow) but greater than 

'2012o  for blue and 14
o
 42' for red there are two impact parameters that result in the 

same deviation, i.e. in the same position inside the bow.  The paths of two rays with the 

same deviation are shown in figure I.18.  One ray is drawn as a full line, the other as a 

dashed line.  They start with different impact parameters, and take different paths through 

the drop, but finish in the same direction.  The drawing is done for a deviation of 145
o
, or 

35
o
 from the bow centre.  The two impact parameters are 0.969 and 0.636.  When these 

two rays are recombined by being brought to a focus on the retina of the eye, they have 

satisfied all the conditions for interference, and the result will be brightness or darkness 

according as to whether the path difference is an even or an odd number of half 

wavelengths. 
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If you look just inside the inner (blue) margin of the bow, you can often clearly see the 

interference fringes produced by two rays with the same deviation.  I haven’t tried, but if 

you were to look through a filter that transmits just one colour, these fringes (if they are 

bright enough to see) should be well defined.  The optical path difference for a given 

deviation, or given r, depends on the radius of the drop (and on its refractive index).  For 

a drop of radius a it is easy to see that the optical path difference is 

 

   ,)'cos'(cos4)cos(cos2 1212 θ−θ−θ−θ na  

 

where θ1 is the larger of the two angles of incidence.  Presumably if you were to measure 

the fringe spacing, you could determine the size of the drops.  Or, if you were to conduct 

a Fourier analysis of the visibility of the fringes, you could determine, at least in 

principle, the size distribution of the drops.  
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Some distance outside the primary rainbow, there is a secondary rainbow, with colours 

reversed – i.e. red on the inside, blue on the outside.  This is formed by two internal 

reflections inside the drop (figure I.19).  The deviation of the final emergent ray from the 

direction of the incident ray is (θ  −  θ')  +  (π  − 2θ')  +  (π  − 2θ')  +  (θ  −  θ'), or 

2π  + 2θ  −  6θ' counterclockwise, which amounts to D = 6θ'  −  2θ clockwise.  That is, 

 

    ( ) .sin2/sin6 11 bnbD −− −=    1.7.9 

 

clockwise, and, as before, this corresponds to an angular distance from the centre of the 

bow r  =  π  −  D.  I show in figure I.20 the angular distance from the centre of the bow 

versus the impact parameter b.  Notice that D goes through a maximum and hence r has a 

minimum value.  There is no light scattered outside the primary bow, and no light 

scattered inside the secondary bow.  When the full glory of a primary bow and a 

secondary bow is observed, it will be seen that the space between the two bows is 

relatively dark, whereas it is brighter inside the primary bow and outside the secondary 

bow. 
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Differentiation shows that the least value of  r, (greatest deviation) corresponding to the 

radius of the secondary bow is 
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   .
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For n = 1.3439 (blue) this is 53
o
 42' and for n =  1.3316 (red) this is 50

o
 31'.  Thus the red 

is on the inside of the bow, and blue on the outside. 

 

 

Exercise.   Trace a ray of light through a spherical drop with three internal reflections, 

leading to a tertiary rainbow.  Determine an expression for the deviation as a function of 

impact parameter, and hence by calculus find the angle of minimum deviation.  You 

should find that for “red” light (n = 1.33), the angle of minimum deviation is 42º.85 

(impact parameter = 0.9740), and for “blue” light (n =  1.34), the angle of minimum 

deviation is 39º.19 (impact parameter = 0.9731).  Since the angle of minimum deviation 

is less than 90º (i.e. forward scattering), this means that the tertiary rainbow will be 

centred on the Sun (not the anti-Sun), and the radius of the bow is equal to the angle of 

minimum deviation (not its supplement).  Thus the tertiary bow has blue on the inside 

and red on the outside.  The tertiary bow, and even a quaternary one, has been observed 

by Theusner (Applied Optics 50, F129 (2011)).  I am grateful to Grant Hutchison for 

drawing my attention to this paper.) 

 

 

Let us return to the primary bow.  The deviation is (equation 1.7.1) D  =  π  +   2θ  −  4θ'.  

Let’s take n = 4/3, which it will be for somewhere in the middle of the spectrum.  

According to equation 1.7.8, the radius of the bow (R  =  π −  Dmin) is then about 42
o
.  

That is, 2θ'  −  θ  =  21
o
.  If we combine this with Snell’s law, 'sin4sin3 θ=θ , we find 

that, at minimum deviation (i.e. where the primary bow is),  θ  = 60
o
.5  and θ'  =  40

o
.8.  

Now, at the point of internal reflection, not all of the light is reflected (because θ' is less 

than the critical angle of 36
o
.9), and it will be seen that the angle between the reflected 

ands refracted rays is (180 − 60.6  −  40.8) degrees = 78
o
.6.  Those readers who are 

familiar with Brewster’s law will understand that when the reflected and transmitted rays 

are at right angles to each other, the reflected ray is completely plane polarized.  The 

angle, as we have seen, is not 90
o
, but is 78

o
.6, but this is sufficiently close to the 

Brewster condition that the reflected light, while not completely plane polarized, is 

strongly polarized.  Thus, as can be verified with a polarizing filter, the rainbow is 

strongly plane polarized. 

 

I now want to address the question as to how the brightness of the bow varies from centre 

to circumference.  It is brightest where the slope of the deviation versus impact parameter 

curve is least – i.e. at minimum deviation (for the primary bow) or maximum deviation 

(for the secondary bow).  Indeed the radiance (surface brightness) at a given distance 

from the centre of the bow is (among other things) inversely proportional to the slope of  

that curve.  The situation is complicated a little in that, for deviations between Dmin and  

),/1(sin42 1 n−−π  (this latter being the deviation for grazing incidence), there are two 

impact parameters giving rise to the same deviation, but for deviations greater than that 
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(i.e. closer to the centre of the bow) only one impact parameter corresponds to a given 

deviation.   

 

Let us ask ourselves, for example, how bright is the bow at 35
o
 from the centre (deviation 

145
o
)?  The deviation is related to impact parameter by equation 1.7.6.  For n  =  4/3, we 

find that the impact parameters for deviations of 144, 145 and 146 degrees are as follows: 

 

    D
o
             b 

 

             144  0.6583    and   0.9623  

             145  0.6366    and   0.9693 

             146                    0.6157    and   0.9736 

 

 

 

Figure I.21 shows a raindrop seen from the direction of the approaching photons.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE I.21 
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Any photons with impact parameters within the two dark annuli will be deviated between 

144
o
 and 146

o
, and will ultimately approach the observer at angular distances between 

36
o
 and 34

o
 from the centre.  The radiance at a distance of 35

o
 from the centre will be 

proportional, among other things, to the sum of the areas of these two annuli. 

 

I have said “among other things”.  Let us now think about other things.  I have drawn 

figure I.15 as if all of the light is transmitted as it enters the drop, and then all of it is 

internally reflected within the drop, and finally all of it emerges when it leaves the drop.  

This is not so, of course.  At entrance, at internal reflection and at emergence, some of the 

light is reflected and some is transmitted.  The fractions that are reflected or transmitted 

depend on the angle of incidence, but, for minimum deviation, about 94% is transmitted 

on entry to and again at exit from the drop, but only about 6% is internally reflected.  

Also, after entry, internal reflection and exit, the percentage of polarization of the ray 

increases.  The formulas for the reflection and transmission coefficients (Fresnel’s 

equations) are somewhat complicated (equations 1.5.1 and 1.5.2 are for unpolarized 

incident light), but I have followed them through as a function of impact parameter, and 

have also taken account of the sizes of the one or two annuli involved for each impact 

parameter, and I have consequently calculated the variation of surface brightness for one 

colour (n = 4/3) from the centre to the circumference of the bow.  I omit the details of the 

calculations, since this chapter was originally planned as an elementary account of 

reflection and transmission, and we seem to have gone a little beyond that, but I show the 

results of the calculation in figure I.22.  I have not, however, taken account of the 

interference phenomena, which can often be clearly seen just within the primary bow. 
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1.8     Problem 
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See figure I.23.  A ray of light is directed at a glass cube of side a, refractive index n, 

eventually to form a spot on a screen beyond the cube.  The cube is rotating at an angular 

speed ω.  Show that, when the angle of incidence is θ, the speed of the spot on the screen 

is  

 

   








θ−

θ+θ
−θω=

2/322

42

)sin(

sin2cos
cos

n

n
av  

 

and that the greatest displacement of the spot on the screen from the undisplaced ray is 

    

        .
sin

1
1

2 22 













θ−
−=

n

a
D  

 

 

I refrain from asking what is the maximum speed and for what value of θ does it occur.  

However, I ran the equation for the speed on the computer, with n = 1.5, and, if the 

formula is right, the speed is ωa
3
1  when θ  =  0, and it increases monotonically up to 

θ  =  45
o
, which is as far as we can go for a cube.  However, if we have a rectangular 

glass block, we can increase θ to 90
o
, at which time the speed is 0.8944 aω.  The speed 

goes through a maximum of about 0.9843aω when θ =  79
o
.3.  I’d be interested if anyone 

can confirm this, and do it analytically. 

 

 

 

 

1.9   Differential Form of Snell’s Law 

 

Snell’s law in the form n sin θ = constant is useful in calculating how a light ray is bent in 

travelling from one medium to another where there is a discrete change of refractive 

index.  If there is a medium in which the refractive index is changing continuously, a 

differential form of Snell’s law may be useful.  This is obtained simply by differentiation 

of n sin θ = constant, to obtain the differential form of Snell’s law: 

 

    .cot
n

dn
d −=θθ      1.9.1 

 

If we express this in terms of the complementary angle ψ (see figure I.24), this equation 

takes the form 

 

.tan
n

dn
d =ψψ      1.9.2 
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Let us see how this might be used.  Let us suppose, for example, that we have some 

medium in which the refractive index diminishes linearly with the y coordinate according 

to 
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This form has 0nn =  at  y = 0,  decreasing linearly to n = 1 at y = a.  We suppose that n 

= 1 everywhere beyond y = a.  The equation is simplified if we write 1for −µ n  and 

1for 00 −µ n , so that    

    ,10 







−µ=µ

a

y
          1.9.4 

 

which has µ decreasing linearly from µ0 to zero.   

 

Let us suppose that we direct a light ray upwards from the origin in a direction making an 

angle α with the horizontal, and we wish to trace the ray through the medium as the 

refractive index continuously changes.  See figure I.24.    

 

With the refractive index changing as in equation 1.9.4, Snell’s law takes the form 
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On integration, this becomes 
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ψ

α
−=    1.9.6 

 

This is the (y, ψ) equation to the path taken by the light.  One can see from this equation 

that the path becomes horizontal when )cos1( α−= ky . 

 

To find the (x ,y) equation, we use the identities 2/12 )tan1(cos −ψ+=ψ  and 

.tan
dx

dy
=ψ  Substitution of these into equation 1.9.6 gives the differential equation to the 

path in ),( yx coordinates: 
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  1.9.10 

 

This can be readily integrated to give the (x ,y) equation to the path: 
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k
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In figure I.25 I have taken a = 1 (in other words, I am expressing all distances in units of 

a), and I am taking n0 = 1.5 (hence k = 3), and I calculate the paths for α  =  15º, 30º, 45º, 

60º, 75º. 
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Figure I.25 and equation 1.9.11 show the paths of the light if the refractive index is 

varying from n0 at y = 0,  to 1 at y = a as described by equation 1.9.3.   But now suppose 

that the refractive index is varying with height according to 
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an
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In this model, too, the refractive index goes from n0 at y = 0,  to 1 at y = a, but the 

variation is not linear.  In fact you might like to convince yourself that it is the speed of 

light that is increasing linearly from y = 0  to y  =  a.   See if you can trace the paths of the 

light rays in this situation.  I think they are arcs of circles, and you might be able to 

calculate the radii and the coordinates of the centres of the circles. 

 

Here’s another one: 
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Here, too, the refractive index goes from n0 at y = 0,  to 1 at y = a.  You might like to try 

tracing the rays in this model.  I think they may be arcs of cycloids. 

 

Of course these examples may seem to be very unlikely.  Can you imagine a glass block 

of width a, made of glass whose refractive index varies continuously from 1.5 at one 

edge to zero at the other?   Not very likely, yet there is a situation that comes to mind in 

which there is a continuous variation of refractive index from some basal value n0 to zero.  

I am thinking of Earth’s atmosphere (or indeed the atmosphere of any planet).  As light 

from a star travels through Earth’s atmosphere, it moves not in a straight line, but in a 

slight curve, so that it is deviated through a few arc minutes before it reaches the 

astronomer’s telescope. For a star low down near the horizon, the refraction amounts to 

almost half a degree.  This has to be taken into account when astronomers are making 

precise positional measurements.  And sound waves, passing through the atmosphere, are 

also subject to refraction via the differential form of Snell’s law.  The speed of sound 

(and hence the refractive index) varies with the temperature of the atmosphere, and hence 

with height in the atmosphere.  Among the many applications of this sort of theory is the 

path of sound waves from meteorites hurtling through the atmosphere.  This is discussed 

in a paper published in Meteoritics and Planetary Science 34, 572-585 (1999).  

    


