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CHAPTER 13 

ALTERNATING CURRENTS 

 

13.1 Alternating current in an inductance 

 

   

 

 

 

 

 

In the figure we see a current increasing to the right and passing through an inductor.  As a 

consequence of the inductance, a back EMF will be induced, with the signs as indicated.  I denote 

the back EMF by V  =  VA − VB.  The back EMF is given by .ILV =  

 

Now suppose that the current is an alternating current given by 

 

     .sinˆ tII =       13.1.1 

 

In that case  ,cosˆ tII = and therefore the back EMF is 
 

          ,cosˆ tLIV =          13.1.2 

  

which can be written   ,cosˆ tVV =      13.1.3 

 

where the peak voltage is    ILV ˆˆ =       13.1.4 

 

and, of course V L IRMS RMS=  .(See Section 13.11.) 

 

The quantity L is called the inductive reactance XL.  It is expressed in ohms (check the 

dimensions), and, the higher the frequency, the greater the reactance.  (The frequency  is /(2).) 

 

Comparison of equations 13.1.1 and 13.1.3 shows that the current and voltage are out of phase, and 

that V leads on I by 90o, as shown in figure XIII.2. 
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13.2   Alternating Voltage across a Capacitor 

 

 

      

     

 

At any time, the charge Q on the capacitor is related to the potential difference V across it by 

Q CV= .   If there is a current in the circuit, then Q is changing, and .VCI =  

 

Now suppose that an alternating voltage given by 

 

     tVV = sinˆ       13.2.1 
 

is applied across the capacitor. 

 

In that case the current is  ,cosˆ tVCI =      13.2.2 

                 

which can be written   ,cosˆ tII =       13.2.3 

 

where the peak current is              VCI ˆˆ =       13.2.4 

 

and, of course I C VRMS RMS=  . 

 

The quantity 1/(C) is called the capacitive reactance XC.  It is expressed in ohms (check the 

dimensions), and, the higher the frequency, the smaller the reactance.  (The frequency  is /(2).) 

 

[When we come to deal with complex numbers, in the next and future sections, we shall 

incorporate a sign into the reactance.  We shall call the reactance of a capacitor )/(1 − C rather than 

merely )/(1 C , and the minus sign will indicate to us that V lags behind I.  The reactance of an 

inductor will remain L, since V leads on I. ] 

 

Comparison of equations 13.2.1 and 13.2.3 shows that the current and voltage are out of phase, and 

that V lags behind I by 90o, as shown in figure XIII.4. 
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13.3  Complex Numbers 

 

I am now going to repeat the analyses of Sections 13.1 and 13.2 using the notation of complex 

numbers.   In the context of alternating current theory, the imaginary unit is customarily given the 

symbol j rather than i, so that the symbol i is available, if need be, for electric currents.  I am 

making the assumption that the reader is familiar with the basics of complex numbers; without that 

background, the reader may have difficulty with much of this chapter. 

 

We start with the inductance.   If the current is changing, there will be a back EMF given by 

.ILV =    If the current is changing as 

 

     ,ˆ tjeII =       13.3.1 

 

then  .ˆ IjejII tj ==   Therefore the voltage is given by 

 

     V jL I=  .      13.3.2 

 

The quantity jL is called the impedance of the inductor, and is j times its reactance.  Its reactance 

is L, and, in SI units, is expressed in ohms.   Equation 13.3.2  (in particular the operator j on the 

right hand side) tells us that V leads on I by 90o. 

 

Now suppose that an alternating voltage is applied across a capacitor.  The charge on the capacitor 

at any time is Q  =  CV, and the current is  .VCI =  If the voltage is changing as 

 

     ,ˆ tjeVV =       13.3.3 
        

then .ˆ VjejVV tj ==   Therefore the current is given by 
 

 

     I jC V=  .      13.3.4 

 

That is to say    V
j

C
I= −


.      13.3.5 

 

The quantity − j C/ ( ) is called the impedance of the capacitor, and is j times its reactance. Its 

reactance is )/(1 − C , and, in SI units, is expressed in ohms.    Equation 13.3.5  (in particular the 

operator −j on the right hand side) tells us that V lags behind I by 90o. 

 

In summary: 

  

 Inductor:    Reactance = L       Impedance = jL.          V  leads on I. 

 

 Capacitor:  Reactance = )/(1 − C    Impedance = −j/(C).    V lags behind I. 
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It may be that at this stage you haven't got a very clear idea of the distinction between reactance 

(symbol X) and impedance (symbol Z) other than that one seems to be j times the other.  The next 

section deals with a slightly more complicated situation, namely a resistor and an inductor in series.  

(In practice, it may be one piece of equipment, such as a solenoid, that has both resistance and 

inductance.)  Paradoxically, you may find it easier to understand the distinction between impedance 

and reactance from this more complicated situation. 

 

 

13.4 Resistance and Inductance in Series 

 

The impedance is just the sum of the resistance of the resistor and the impedance of the inductor: 

 

     Z R jL= + .     13.4.1 

 

Thus the impedance is a complex number, whose real part R is the resistance and whose imaginary 

part L is the reactance.  For a pure resistance, the impedance is real, and V and I are in phase.  For 

a pure inductance, the impedance is imaginary (reactive), and there is a 90o phase difference 

between V and I. 

 

The voltage and current are related by 
  

         V IZ R jL I= = +( ) .      13.4.2 

 

Those who are familiar with complex numbers will see that this means that V leads on I , not by 

90o, but by the argument of the complex impedance, namely tan ( / ).−1 L R   Further the ratio of the 

peak (or RMS) voltage to the peak (or RMS) current is equal to the modulus of the impedance, 

namely R L2 2 2+  . 

 

 

 

13.5 Resistance and Capacitance in Series 

 

Likewise the impedance of a resistance and a capacitance in series is 

 

     Z R j C= − / ( ).      13.5.1 

 

The voltage and current are related, as usual, by V = IZ.   Equation 13.5.1 shows that the voltage 

lags behind the current by tan [ / ( )],−1 1 RC  and that .)/(1ˆ/ˆ 22 += CRIV  

 

 

13.6 Admittance 

 

In general, the impedance of a circuit is partly resistive and partly reactive: 

 

     Z R jX= + .     13.6.1 
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The real part is the resistance, and the imaginary part is the reactance.  The relation between V and I 

is V  =  IZ.  If the circuit is purely resistive, V and I are in phase.  If is it purely reactive, V and I 

differ in phase by 90o. The reactance may be partly inductive and partly capacitive, so that 

 

          ).( CL XXjRZ ++=      13.6.2 

 

Indeed we shall describe such a system in detail in the next section.   Note that XC is negative.  

[The equation is sometimes written ),( CL XXjRZ −+=  in which XC is intended to represent the 

unsigned quantity )/(1 C .  In these notes XC is intended to represent )/(1 − C .] 

 

The reciprocal of the impedance Z is the admittance, Y. 

 

Thus     Y
Z R jX

= =
+

1 1
.     13.6.3 

 

And of course, since V = IZ,  I  =  VY. 

 

Whenever we see a complex (or a purely imaginary) number in the denominator of an expression, 

we always immediately multiply top and bottom by the complex conjugate, so equation 13.6.3 

becomes 

     .
||

*
222 XR

jXR

Z

Z
Y

+

−
==     13.6.4 

 

This can be written 

 

     Y G jB= + ,     13.6.5 

 

where the real part, G, is the conductance: 

 

     G
R

R X
=

+2 2
,      13.6.6 

 

and the imaginary part, B, is the susceptance: 

 

     B
X

R X
= −

+2 2
.     13.6.7 

 

The SI unit for admittance, conductance and susceptance is the siemens (or the "mho" in informal 

talk). 

 

I leave it to the reader to show that 
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     R
G

G B
=

+2 2
     13.6.8 

 

and     X
B

G B
= −

+2 2
.     13.6.9 

  

   

Example 

 

What is the impedance of the circuit below to alternating current of frequency 2000/ Hz  ( = 

4000 rad s−1)? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I think that the following will be readily agreed.  (Remember, the admittance is the reciprocal of the 

impedance; and, whenever you see a complex number in a denominator, immediately multiply top 

and bottom by the conjugate.) 

 

Impedance of AB =     25(1  −  2j)    

Impedance of CD =     20(2  +  j)      

Admittance of AB =    (1 + 2j)/125  S 

Admittance of CD =    (2 – j)/100    S    

 

Admittance of the circuit =   (28 + 6j)/1000  S 

 

Impedance of the circuit  =  100 × (14 − j)/41   

 

The current leads on the voltage by 12º 

25  40  

5 F 5 mH 

A 

B 

C 

D 
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Another example 

 

 

 
         

             

 

 

 

 

 

 

    Three resistors and a capacitor are connected to an AC voltage source as shown.  The point E is 

grounded (earthed), and its potential can be taken as zero.  Calculate the three currents, and the 

potential at B. 

 

   We can do this by using Kirchhoff’s rules in the usual way.  When I did this I found the algebra 

to be slightly heavy going, and I found that it was much simplified by writing aR
C

=


1
, where a is 

a dimensionless number.  Then, instead of writing the impedance of the section BDG as 


−
C

j
R , I 

write it as )1( jaR − . 

 

     Kirchhoff’s rules, applied to two circuits and the point B, are 

 

     RIRIV 21 +=      13.6.10 

     0)1( 32 =−− IjaI      13.6.11 

     321 III +=       13.6.12 

 

These equations are to be solved for the three currents 321 ,, III .  These will all be complex 

numbers, representing alternating currents. Solution could proceed, for example, by eliminating I3 

from equations (10) and (11), and then eliminating I3 from equations (10) and (12).  This results in 

two equations in I1 and I2.  We can eliminate I1 from these to obtain I2.  I make it
)23(

2
ajR

V
I

−
= , 

but then we immediately multiply top and bottom by aj23+  to obtain 

 

     
R

V

a

aj
I 














+

+
=

22
49

23
     13.6.13 

   

It is then straightforward to return to the original equations to obtain 

 

      

C 

R R 

R 

A 
B 

D 
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E 
G 

I3 

I1 
I2 

tjeVV = ˆ  
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R

V

a

aja
I 














+

++
=

2

2

1
49

26
               13.6.14 

 

and     
R

V

a

aja
I 














+

−+
=

2

2

3
49

23
    13.6.15 

 

For example, suppose that the frequency and the capacitance were such that a = 1, then 

 

     
R

Vj
I 







 +
=

13

8
1      13.6.16 

      

     
R

Vj
I 







 +
=

13

23
2      13.6.17 

 

and     
R

Vj
I 







 −
=

13

5
2      13.6.18 

 

Thus Il leads on V by 7º.1;  I2 leads on V by 33º.7;  and I3 lags behind V by 11º.3. 

 

The vector (phasor) diagram for these three currents is shown below, in which the phasor 

representing the alternating voltage V is directed along the real axis. 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

Bearing in mind that the potential at E is zero, we see that the potential at B is just  RI3  and is in 

phase with I3. 

 

There is another method of finding I1, which we now try.  If we get the same answer by both 

methods, this will be a nice check for possible mistakes in the algebra. 

 

I’ll re-draw the circuit diagram as follows: 

 

I3 

I1 

I2 

V 
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     To calculate I1 we have to calculate the admittance Y of the circuit, and then we have 

immediately .2 YVI =    The impedance of R and C in series is jaRR −  and so its admittance is 

jaRR −

1
 .  The admittance of the rectangle is therefore 









−

−
=+

− ja

ja

RRjaRR 1

2.111
.  The 

impedance of the rectangle is ,
2

1.









−

−

ja

ja
R  and the  impedance of the whole circuit is R plus this, 

which is .
2

23.









−

−

ja

ja
R   The admittance of the whole circuit is .

23

2.1









−

−

ja

ja

R
  Multiply top and 

bottom by the conjugate of the denominator to obtain  .
49

26.1
2

2










+

++

a

jaa

R
  Hence 

,
49

26.
2

2

1 








+

++
=

a

jaa

R

V
I  which is what we obtained by the Kirchhoff method. 

 

 

 

 

 

   If you want to invent some similar problems, either as a student for practice, or as an instructor 

looking for homework or examination questions, you could generalize the above problem as 

follows.    

           

 

 

 

 

 

 

C R  

R  

R 

I1 I1 

tjeVV = ˆ  

 

A 
B 

D 

F 

E 
G 

I3 

I1 
I2 

tjeVV = ˆ  

Z1 

Z2 Z3 
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   Each of the three impedances in the circuit could be various combinations of capacitors and 

inductors in series or in parallel, but, whatever the configuration, each could be written in the form 

jXR + .  Three Kirchhoff equations could be constructed as follows 

 

     3311 ZIZIV +=      13.6.19 

     2211 ZIZIV +=      13.6.20 

     321 III +=       13.6.21 

 

If I have done my algebra correctly, I make the solutions 

 

    
211332

32
1

)(

ZZZZZZ

ZZV
I

++

+
=      13.6.22 

 

    
211332

3
2

ZZZZZZ

VZ
I

++
=      13.6.23 

 

    
211332

2
3

ZZZZZZ

VZ
I

++
=      13.6.24 

 

Each must eventually be written in the form   IjI ImRe + , or .)( VjBG +   For example, suppose 

that the three impedances, in ohms, are .33,24,32 321 jZjZjZ −=+=−=   In that case, I 

believe (let me know if I’m wrong, jtatum at uvic.ca) that equation 13.6.25 becomes, after 

manipulation, .
1429

15274
3 VI

j+
=    This means that I3 leads on V by 64º.0, and that the peak value of I3 

is 0.118V  A,  where V is in V. 

 

  The potential at B is 33ZI .  Both of these are complex numbers and the potential at B us not in 

phase with I3 unless Z3 is purely resistive. 

 

   In composing a problem, you probably want all resistances and reactances to be of comparable 

magnitudes, say a few ohms each.  As a guide, if you choose the frequency to be 500/ Hz, so that 

 = 103 rad s−1, and if you choose inductances to be about 10 mH and capacitances about 100 F, 

your reactances will each be about 10  

 

  You can probably also compose problems with various bridge circuits, such as  
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There are six independent impedances, so you’ll need six equations.  Three for Kirchhoff’s second 

rule, to cover the complete circuit once; and three of Kirchhoff’s first rule, at three points.  Good 

luck in solving them.  Remember that, in an equation involving complex numbers, the real and 

imaginary parts are separately equal.  And remember, as soon as a complex number appears in a 

denominator, multiply top and bottom by the conjugate.  Alternatively, and easier, we could do 

what we did with a similar problem with direct currents in Section 4.12, using a delta-star 

transformation.    We’ll try an example in Section 13.9, subsection 13.9.4, and we make some 

further remarks on the delta-star transform with alternating currents in  Section 13.12.  

 

     

13.7   The RLC Series Acceptor Circuit 

 

A resistance, inductance and a capacitance in series is called an "acceptor" circuit, presumably 

because, for some combination of the parameters, the magnitude of the inductance is a minimum, 

and so current is accepted most readily.  We see in figure XIII.5 an alternating voltage 
tjeVV = ˆ applied across such an R, L and C.  

 

 

 

 

 

 

 

 

 

 

 The impedance is 

 

     .
1











−+=

C
LjRZ     13.7.1 

 

tjeVV = ˆ
 

FIGURE XIII.5 

C L R 

Z1 

Z2 

Z4 

Z3 

Z5 

Z6 
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We can see that the voltage leads on the current if the reactance is positive;  that is, if the inductive 

reactance is greater than the capacitive reactance;  that is, if   1/ .LC   (Recall that the 

frequency, , is /(2)).  If   1/ ,LC  the voltage lags behind the current.  And if 

 = 1/ ,LC  the circuit is purely resistive, and voltage and current are in phase. 

 

The magnitude of the impedance (which is equal to IV ˆ/ˆ ) is 

 

           ( ) ,)/(1||
22 −+= CLRZ     13.7.2 

 

and this is least (and hence the current is greatest) when  = 1/ ,LC  the resonant frequency, 

which I shall denote by 0. 

 

It is of interest to draw a graph of how the magnitude of the impedance varies with frequency for 

various values of the circuit parameters.  I can reduce the number of parameters by defining the 

dimensionless quantities 

 

      =  / 0       13.7.3 

 

     Q
R

L

C
=

1
      13.7.4 

 

and      z
Z

R
=

| | .      13.7.4 

 

You should verify that Q is indeed dimensionless.   We shall see that the sharpness of the resonance 

depends on Q, which is known as the quality factor (hence the symbol Q).  In terms of the 

dimensionless parameters, equation 13.7.2 becomes 

 

    z Q= + −1 12 2( / ) .       13.7.5 

 

This is shown in figure XIII.6, in which it can be seen that the higher the quality factor, the sharper 

the resonance.   
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In particular, it is easy to show that the frequencies at which the impedance is twice its minimum 

value are given by the positive solutions of 

 

    .01
3

2 2

2

4 =+







+−

Q
    13.7.6 

 

If I denote the smaller and larger of these solutions by − and +, then + − − will serve as a 

useful description of the width of the resonance, and this is shown as a function of quality factor in 

figure XIII.7. 
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13.8   The RLC Parallel Rejector Circuit 

 

In the circuit below, the magnitude of the admittance is least for certain values of the parameters.  

When you tune a radio set, you are changing the overlap area (and hence the capacitance) of the 

plates of a variable air-spaced capacitor so that the admittance is a minimum for a given frequency, 

so as to ensure the highest potential difference across the circuit.  This resonance, as we shall see, 

does not occur for an angular frequency of exactly 1/ ,LC  but at an angular frequency that is 

approximately this if the resistance is small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

tjeVV = ˆ
 

C 

L R 



 15 

The admittance is 

     Y jC
R jL

= +
+




1
.     13.8.1 

After some routine algebra  (multiply top and bottom by the conjugate; then collect real and 

imaginary parts), this becomes 

    Y
R j L C R C L

R L
=

+ + −

+

 



( ) .
2 2 2

2 2 2
   13.8.2 

 

The magnitude of the admittance is least when the susceptance is zero, which occurs at an angular 

frequency of 

     0

2
2

2

1
= −

LC

R

L
.     13.8.3 

 

If  R L C / ,  this is approximately 1/ .LC  

 

 

13.9   AC Bridges 

 

We  have already met, in Chapter 4, Section 4.11, the Wheatstone bridge, which is a DC (direct 

current) bridge for comparing resistances, or for "measuring" an unknown resistance if it is 

compared with a known resistance.  In the Wheatstone bridge (figure IV.9), balance is achieved 

when 
R

R

R

R

1

2

3

4

= .  Likewise in a AC (alternating current) bridge, in which the power supply is an 

AC generator, and there are impedances (combinations of R, L and C ) in each arm (figure XIII.8), 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z1 Z2 

Z3 
Z4 

FIGURE XIII.8 

 
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balance is achieved when 

 

      
Z

Z

Z

Z

1

2

3

4

=      13.9.1 

 

or, of course, 
Z

Z

Z

Z

1

3

2

4

= .  This means not only that the RMS potentials on both sides of the detector 

must be equal, but they must be in phase, so that the potentials are the same at all times.  (I have 

drawn the "detector" as though it were a galvanometer, simply because that is easiest for me to 

draw.  In practice, it might be a pair of earphones or an oscilloscope.)  Each side of equation 13.9.1 

is a complex number, and two complex numbers are equal if and only if their real and imaginary 

parts are separately equal.  Thus equation 13.9.1 really represents two equations – which are 

necessary in order to satisfy the two conditions that the potentials on either side of the detector are 

equal in magnitude and in phase. 

 

We shall look at three examples of AC bridges.  It is not recommended that these be committed to 

memory.  They are described only as examples of how to do the calculation. 

 

 

    13 9.1   The Owen Bridge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 

R2 

R4 

FIGURE XIII.9 
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C4 
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This bridge can be used for measuring inductance.  Note that the unknown inductance is the only 

inductance in the bridge.   Reactance is supplied by the capacitors. 

 

Equation 13.9.1 in this case becomes 

 

     
R

R jL

j C

R j C

1

2 2

3

4 4+
=

−

−





/ ( )

/ ( )
.   13.9.2 

 

That is,    R R j
R

C

L

C
j

R

C
1 4

1

4

2

3

2

3

− = −
 

.   13.9.3 

 

On equating real and imaginary parts separately, we obtain 

 

     L R R C2 1 4 3=       13.9.4 

 

and     
R

R

C

C

1

2

4

3

= .      13.9.5 

 

 

   13.9.2   The Schering Bridge 

 

This bridge can be used for measuring capacitance. 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
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R4 

FIGURE XIII.10 
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The admittance of the fourth arm is 
1

4

4
R

jC+  , and its impedance is the reciprocal of this. I leave 

the reader to balance the bridge and to show that 

 

     
R

R

C

C

1

2

4

3

=       13.9.6 

 

and     C
C R

R
1

3 4

2

= .      13.9.7 

 

     13 9.3   The Wien Bridge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This bridge can be used for measuring frequency. 

 

The reader will, I think, be able to show that 

 

 

R1 
R2 

R3 

FIGURE XIII.11 

C4 

C3 

R4 
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R

R

C

C

R

R

4

3

3

4

2

1

+ =      13.9.8 

 

and     2

3 4 3 4

1
=

R R C C
.     13.9.10 

 

    

   13.9.4  Bridge Solution by Delta-Star Transform 

 

   In the above examples, we have calculated the condition that there is no current in the detector -. 

i.e. that the bridge is balanced.  Such calculations are relatively easy.  But what if the bridge is not 

balanced?  Can we calculate the impedance of the circuit?  Can we calculate the currents in each 

branch, or the potentials at any points?  This is evidently a little harder.  We should be able to do it.  

Kirchhoff’s rules and the delta-star transform still apply for alternating currents, the complication 

being that all impedances, currents and potentials are complex numbers.   

 

 

  Let us start by trying the following problem: 

    

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  =   500  rad s−1 

400 F 

10 mH 

6 mH 

5  

2  

6  

4  

3 

500 F 

200 F 

A 
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That is to say: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Our question is:  What is the impedance of the circuit at a frequency of   =   500  rad s−1? 

 

     We refer now to Chapter 4, Section 12.  We are going to replace the left hand “delta” with its 

equivalent “star”.  Recall equations 4.12.2 - 4.12.13.  With alternating currents, We can use the 

same equations with alternating currents, provided that we replace the 321321 GGGRRR  in the delta 

and the  321321 gggrrr  in the star with 321321 YYYZZZ  in the delta and 321321 yyyzzz in the star.  That 

is, we replace the resistances with impedances, and conductances with admittances.   This is going 

to need a little bit of calculation, and familiarity with complex numbers. I used a computer - hand 

calculation was too tedious and prone to mistakes.  This is what I got, using 
321

32
1

ZZZ

ZZ
z

++
=  and 

cyclic variations: 

 

 

 

The impedances 

are indicated in 

ohms. 

 
     =   500  rad s−1 

Z1=5+5j Z4=−j 

Z5=4+3j Z2=−10j 

Z3=3−4j 

A 

B 

C 

D 

I 

I1 

I2 

I4 

I5 

I3 

  

B 
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The impedance of PBC is  3.931 408  −  4.115 523j      

The impedance of PDC is  4.642 599  −  0.444 043j      

The admittance of PBC is  0.121 364  +  0.127 048j     S. 

The admittance of PDC is  0.213 444  +  0.020 415j     S. 

 

The admittance of PC   is  0.334 808  +  0.147 463.j      S. 

The impedance of PC   is  2.501 523  −  1.101 770j      . 

 

The impedance of AC  is  7.194 664  +   0.486 678j     . 

The admittance of  AC  is 0.138 359  −   0.009 359j      S. 

 

 
  =   500  rad s−1 

Z4=−j 

Z5=4+3j 

The impedances 

are indicated in 

ohms. 

z1 = 0.642 599 − 3.444 043j 

 

z2 = 1.931 408 + 0.884 477j 

 

z3 = 4.693 141 + 1.588 448j 

z2 

z3 

z1 

B 

D 

C  Potential here taken to be zero. P A 

i2  =  I4 I4 

I5 
i1  =  I5 

54 III +=  

C 
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   Suppose the applied voltage is tVVVV =−= cosˆ
CA , with  = 500 rad s−1 and V̂ = 24 V.   

Can we find the currents in each of ,,,,, 54321 ZZZZZ  and the potential differences between the 

several points? This should be fun.  I’m sitting in front of my computer.  Among other things, I 

have trained it instantly to multiply two complex numbers and also to calculate the reciprocal of a 

complex number.  If I ask it for (2.3 + 4.1j)(1.9 − 3.4j) it will instantly tell me 18.31 − 0.03j.  If I 

ask it for 1/(0.5 + 1.2j) it will instantly tell me 0.2959 −  j.  I can instantaneously convert 

between impedance and admittance. 

     

   The current through any element depends on the potential difference across it.  We can take any 

point to have zero potential, and determine the potentials at other points relative to that point. I 

choose to take the potential at C to be zero, and I have indicated this by means of a ground (earth) 

symbol at C.  We are going to try to find the potentials at various other points relative to that at C.  

 

   In drawings B and C I have indicated the currents with arrows.  Since the currents are alternating, 

they should, perhaps, be drawn as double-headed arrows. However, I have drawn them in the 

direction that I think they should be at some instant when the potential at A is greater than the 

potential at C.  If any of my guesses are wrong, I’ll get a negative answer in the usual way. 

 

The total current I is V times the admittance of the circuit.   

That is:     A)620224.0611320.3()359009.0359138.0(24 jjI −=−= . 

 

 The peak current will be 3.328200 A  (because the modulus of the admittance is 0.138675 S), and 

the current lags behind the voltage by 3º.9.    

 

I hope the following two equations are obvious from drawing  C. 

 

    
)()( 515424

54

ZzIZzI

III

+=+

+=
 

From this, 

 

A681511.0284514.1

)620224.0611320.3(
559567.4007574.8

043444.0642599.4

5421

51
4

j

j
j

j
I

ZZzz

Zz
I

+=

−








−

−
=











+++

+
=

 

 

I4  leads on V by 18º.7    A.397598.1ˆ
4 =I  

 

A302736.0328806.1
| 5421

42
5 jI

ZZzz

Zz
I −=











+++

+
=  

 

I5  lags behind V by 22º.2     A631950.1ˆ
5 =I  
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Check:   III =+ 54 ✓ 

 
  I show below graphs of the potential difference between A and C  )( CA VVV −=  and the currents 

I, I4 and I5.  The origin for the horizontal scale is such that the potential at A is zero at t = 0.  The 

vertical scale is in volts for VC, and is five times the current in amps for the three currents.  

 

0 100 200 300 400 500 600 700
-25

0

25

t  deg

V

5I

5I
4

5I
5

 
 

We don’t really need to know 321 ,, iii , but we do want to know 321 ,, III .   Let’s first see if we can 

find some potentials relative to the point C.   

 

From drawing C we see that  

 

44BCB ZIVVV ==− , which results in  V)057548.6975586.5(B jV −=   

 

VB  lags behind V by 0.864 432  rad  = 49º.5    V.603607.8ˆ =BV  

 

 

From drawing C we see that  
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55C ZIVVV DD ==− , which results in  V)775473.2216434.9(D jV +=   

 

VD  leads on V by  0.256 440 rad = 14º.7    V.153753.9ˆ =BV  

 

 

We can now calculate I3 (see drawing B) from  3DB

3

DB
3 )( YVV

Z

VV
I −=

−
=  .  I find 

A178698.1824981.03 jI −=  

 

I3 lags behind V by 1.046 588 rad = 60º.0.    .A578961.1ˆ
3 =I  

 

 

I1 can now be found from 1BA

1

BA
1 )( YVV

Z

VV
I −=

−
= .  The real part of VA is 24 V, and (since we 

have grounded C), its imaginary part is zero.  If in doubt about this verify that 

.V)024()678486.0664194.7)(620224.0611320.3( jjjIZ +=+−= ✓ 

I find 

 

A186497.1108496.21 jI −=  

 

I1 lags behind V by 0.443 725 rad = 25º.4.    .A763753.2ˆ
1 =I  

 

In a similar manner, I find 
 

A876961.0503824.02 jI +=  

 

I2 leads on V by 0.862 147 rad = 49º.4.    .A891266.1ˆ
2 =I  

 

Summary: 

A620224.0611320.3 jI −=  

A186497.1108496.21 jI −=  

A876961.0503824.02 jI +=  

A178698.1824981.03 jI −=  

A681511.0284514.14 jI +=     

A302736.0328806.15 jI −=  

 

These may be checked by verification of Kirchhoff’s first rule at each of the points A, B, C, D. 
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Further remarks on the delta-star transform with alternating currents are given in Section 13.12 

 

 

13.10   The Transformer 

 

We met the transformer briefly in Section 10.9.  There we pointed out that the EMF induced in the 

secondary coil is equal to the number of turns in the secondary coil times the rate of change of 

magnetic flux; and the flux is proportional to the EMF applied to the primary times the number of 

turns in the primary. Hence we deduced the well known relation 

 

      
V

V

N

N

2

1

2

1

=      13.10.1 

 

relating the primary and secondary voltages to the number of turns in each.  We now look at the 

transformer in more detail; in particular, we look at what happens when we connect the secondary 

coil to a circuit and take power from it. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure XIII.12, we apply an AC EMF tjeVV = ˆ  to the primary circuit.  The self inductance of 

the primary coil is Ll, and an alternating current I1 flows in the primary circuit. The self inductance 

of the secondary coil is L2, and the mutual inductance of the two coils is M.  If the coupling 

between the two coils is very tight, then M L L= 1 2 ;  otherwise it is less than this.  I am supposing 

that the resistance of the primary circuit is much smaller than the reactance, so I am going to 

neglect it.  

 

 

FIGURE XIII.12 

tjeVV = ˆ  

I1 I2 

L2 L1 

M 

R 
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The secondary coil is connected to a resistance R.  An alternating current I2 flows in the secondary 

circuit. 

 

Let us apply Ohm's law (or Kirchhoff's second rule) to each of the two circuits. 

 

In the primary circuit, the applied EMF V is opposed by two back EMF's:   

 

     .211 IMILV  +=      13.10.2 

 

That is to say    V j L I j MI= + 1 1 2 .    13.10.3 

 

Similarly for the secondary circuit: 

 

     0 1 2 2 2= + +j MI j L I RI  .   13.10.4 

 

These are two simultaneous equations for the currents, and we can (with a small effort) solve them 

for I1 and I2: 

 

   V
M

R
j

M

L
IM

M

LL
j

M

RL










−=
















−


+ 2

1
211   13.10.5 

 

and    .

1

2

1

2

2
L

MV
I

L

M
LjR −=
















 
−+    13.10.6 

 

This would be easier to understand if we were to do the necessary algebra to write these in the 

forms I a jb V I c jd V1 2= + = +( ) ( ) .and   We could then easily see the phase relationships 

between the current and V as well as the peak values of the currents.  There is no reason why we 

should not try this, but I am going to be a bit lazy before I do it, and I am going to assume that we 

have a well designed transformer in which the secondary coil is really tightly wound around the 

primary, and M L L= 1 2 .  If you wish, you may carry on with a less efficient transformer, with 

M k L L= 1 2 ,  where k is a coupling coefficient less than 1, but I'm going to stick with 

M L L= 1 2 .  In that case, equations 13.10.5 and 6 eventually take the forms 

 

         V
L

j
RN

N
V

L
j

RL

L
I 










−=










−=

1

2

1

2

2

11

2
1

11
   13.10.7 

 

and    I
R

L

L
V

N

N R
V2

2

1

2

1

1
= − = − .    13.10.8

    

These equations will tell us, on examination, the magnitudes of the currents, and their phases 

relative to V. 
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Now look at the circuit shown in figure XIII.13.  

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

In figure XIII.13 we have a resistance R N N( / )1 2

2  in parallel with an inductance L1.  The 

admittances of these two elements are, respectively, ( / ) /N N R2 1

2  and − j L/ ( )1 , so the total 

admittance is 
N

N R
j

L

2

2

1

2

1

1
−


.  Thus, as far as the relationship between current and voltage is 

concerned, the primary circuit of the transformer is precisely equivalent to the circuit drawn in 

figure XIII.13.  To see the relationship between I1 and V, we need look no further than figure 

XIII.13. 

 

Likewise, equation 13.10.8 shows us that the relationship between I2 and V is exactly as if we had 

an AC generator of EMF 12 / NVN  connected across R, as in figure XIII.14. 

 

    

 

 

 

 

 

 

 

 

 

 

Note that, if the secondary is short-circuited (i.e. if  R = 0 and if the resistance of the secondary coil 

is literally zero) both the primary and secondary current become infinite.  If the secondary circuit is 

left open (i.e. R  =  ), the secondary current is zero (as expected), and the primary current, also as 

expected, is not zero but is − jV L/ ( );1   That is to say, the current is of magnitude V L/ ( )1 and it 

lags behind the voltage by 90o, just as if the secondary circuit were not there. 

 

FIGURE XIII.13 

tjeVV = ˆ  

I1 

L1 
R

N

N
2

2

1









 

tjeV
N

N ˆ

2

1   

FIGURE XIII.14 

R 
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13.11  Root-mean-square values, power and impedance matching 

 

    We have been dealing with alternating currents of the form tjeII = ˆ .  I have been using the 

notation Î  to denote the “peak”  (i.e. maximum) value of the current. Of course, in the notation of 

complex numbers, this is synonymous with the modulus of I.  That is to say .||modˆ III ==   I 

shall use one or other notation wherever it is convenient.  This will often mean using ^ when 

describing time-varying quantities, and |  | when describing constant (but perhaps frequency 

dependent) quantities, such as impedances. 

 

    Suppose we have a current that varies with time as .sinˆ tII =    During a complete period 

)/2( =P the average or mean current is zero.  The mean of the square of the current, however, is 

not zero.   The mean square current,  2I , is defined such that 

 

     .2

0

2 dtIPI
P

=      13.11.1 

   With ,sinˆ tII =  this gives .ˆ2

2
12 II =    The square root of this is the root-mean-square current, 

or the RMS value of the current: 

 

               .̂707.0ˆ
2

1
RMS III ==     13.11.2 

 

 

    When we are told that an alternating current is so many amps, or an alternating voltage is so 

many volts, it is usually the RMS value that is meant, though we cannot be sure of this unless the 

speaker or writer explicitly says so.  If you wish to be understood and not misunderstood in your 

own writings, you will always make it explicitly clear what meaning you intend. 

 

    If an alternating current is flowing through a resistor, at some instant when the current is I, the 

instantaneous rate of dissipation of energy in the resistor is RI 2 .  The mean rate of dissipation of 

energy during a complete cycle is .2
RMSRI    This is one obvious reason why the concept of RMS 

current is important. 

 

    Now cast your mind back to Chapter 4, Section 4.8.  There we imagined that we connected a 

resistance R across a battery of EMF E and internal resistance r.   We calculated that the power 

delivered to the resistance was ,
)( 2

2
2

rR

RE
RIP

+
== and that this was greatest (and equal to 

rE /2

4
1 ), when the external resistance was equal to the internal resistance of the battery. 
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    What is the corresponding situation with alternating current?  Suppose we have a box (a 

“source”) that delivers an alternating voltage V (which is represented by a complex number 
tjeV ˆ ), 

and that this box has an internal impedance .jxrz +=   If we connect across the box a device (a 

“load”) that has an impedance jXRZ += , what will be the power delivered to the load, and can 

we match the external impedance of the load to the internal impedance of the box in such a manner 

that the power delivered to the load is greatest? 

 

   The second question is quite easy to answer.  Reactance can be either positive (inductive) or 

negative (capacitive), and so it is quite possible for the total reactance of the entire circuit to be 

zero.  Thus for a start, we want to ensure that xX −= .   That is, the external reactance should be 

equal in magnitude but opposite in sign to the internal reactance.  The circuit is then purely 

resistive, and the power delivered to the circuit is just what it was in the direct current case, namely 

,
)( 2

2
2

rR

RE
RIP

+
== where the current and EMF in this equation are now RMS values.  And, as 

in the direct current case, this is greatest if .rR =   The conclusion is that, for maximum power 

transfer,  jXR +   should equal .jxr −   That is, for the external and internal impedances to be 

matched for maximum power transfer, *zZ = .  The load impedance should equal the conjugate of 

the source impedance. 

 

    What is the power delivered to the load when the impedances are not matched?  In other words, 

when jxrz +=  and jXRZ += .  It is RIP 2

2
1 ˆ= .  The current is given by the equation 

)( zZIE += .  (These are all complex numbers - i.e. they are all periodic functions with different 

phases.  E and I vary with time.)  Now if w1  and  w2 are two complex numbers, it is well known 

(from courses in complex numbers) that .|||||| 2121 wwww =   We apply this now to 

)( zZIE += .  [I shall use ^ for the “peak” of the time-varying quantities, and |   | for the modulus 

of the impedances]   We obtain  .||ˆˆ zZIE +=  

 

Thus      
2

2
RMS

2

2

2
12

2
1

)()(||

ˆ
ˆ

xXrR

RE

zZ

RE
RIP

+++
=

+
==    13.11.3 

 

 

13.12  Some Remarks on the Star-Delta Transform 
 

   We pointed out in Section 13.9.4 that we can use the star-delta transform with alternating 

currents, provided that we replace the several R, G, r, g quantities in equations 4.12.1 - 4.12.13 with 

the corresponding Z, Y, z, y quantities of alternating current theory.  Because Z, Y, z, y are all 

complex, the calculation of the transforms may be tedious, and it requires care and patience even 

though it is in principle straightforward. The calculation is eased somewhat by understanding that if 

two complex numbers are equal, their real and imaginary parts are separately equal, and by 

remembering what to do if a complex number appears in the denominator of an expression.  We 

successfully performed such a calculation in Section 13.9.4. 
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   A warning may be in order.  It may sometimes happen that, in applying the delta-star transform to 

a circuit with an alternating current, in the transformed geometry the real part of the impedance of 

an arm (i.e. the resistance) turns out to be negative.  This may be disconcerting when first 

encountered.  Nevertheless, even in such cases, the delta-star transform may still be a useful 

computational device in solving a circuit problem, even though the transformed circuit is a physical 

impossibility. 

 

   A negative didn’t happen in our example in Section 13.9.4, but here’s a simple example where it 

does happen.  What is the equivalent delta of the star shown below, assuming that the angular 

frequency of the current is 4102 =   rad s−1   (frequency   =  104/ Hz)? 

 

 

 

 

    

                  

 

 

 

 

 

 

 

                                                    

 

 

   Let’s relabel the drawing showing the impedances in ohms.  

     

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Using the transforms   
1

211332
1

z

zzzzzz
Z

++
=  , etc., we find that the impedances of the sides of 

the delta, in ohms, are: Z1  = 1.50 +  0.95j  

200  F 

0.2  

0.06  mH 

FIGURE XIII.15 

z2  =   −0.25j 

2.01 =z  

z3  = 1.2j 

FIGURE XIII.16 
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    Z2  = −0.76 +  1.20j 

    Z3  = j25.03158.0 −  

 

Recall that inductive reactance is L and capacitive reactance is −1/(C).   With this in mind we 

see that: 
 

We could represent Z1 as a resistance of 1.50  in series with an inductance of 0.0475 mH. 

We could represent Z2 as a resistance of −0.76  in series with an inductance of 0.06 mH.  

We could represent Z3 as a resistance of 3158.0    in series with a capacitance of 200 F,  

 

 

   In a typical problem we may be given the elements of a star, and, for a given frequency, be asked 

to determine the elements of the corresponding delta, or vice versa.  However, since the reactance 

of every element is frequency-dependent, this gives the opportunity of devising a problem in which 

the resistances, capacitances and inductances are given in all arms of both the star and the 

corresponding delta, and asking what the frequency must be. 

  

  For example, suppose the star has 

 

First arm:            A resistance of 0.2  

Second arm:        A capacitance of 200 F 

Third arm:          An inductance of 0.06 mH 

 

and the corresponding delta has 

 

First side:            A resistance of 1.50  in series with an inductance of 0.0475 mH 

Second side:        A resistance of −0.76  in series with an inductance of 0.06 mH                

Third side:           A resistance of 3158.0   in series with a capacitance of 200 F. 

 

What is the frequency? 

 

The impedances in ohms are: 

 

In the star 

=

−=

=

− jz

jz

z

5
3

2

1

106

/5000

2.0

 

 

In the delta: 

 

−=

+−=

+=

−

−

/50003158.0

10676.0

1075.450.1

3

5
2

5
1

jZ

jZ

jZ


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If we now use  
1

211332
1

z

zzzzzz
Z

++
=  we find, with some care, that 4102 =   rad s−1    

   If one were to start with the elements of the delta and the corresponding star in Section 13.9.4, 

one could presumably recover the angular frequency of 500 rad s−1.  I don’t think I can summon up 

the energy myself. 

 

13.13  The Telephonist’s, or Telegrapher’s, Equations 

 

   How fast does “electricity” travel down a wire?  I think at one time in my life, I imagined that 

somehow electrons in a metal wire were racing around the circuit at the speed of light, or, in an 

alternating current, they were rushing to and fro at such a speed.  We know of course that the real 

situation is nothing like that at all.  We saw, for example, in Chapter 4, Section 4.3, that in a direct 

current in a wire, the drift of electrons along a wire is very, very slow indeed, while in an 

alternating current the electrons presumably hardly move at all.  And yet, when we close the switch 

in an electrical circuit, something seems to happen almost instantaneously.  Some sort of electrical 

signal must travel down the wire at great speed. 

 

    

 

   

 

 

 

 

 

 

   In figure XIII.17, the box EMF is some sort of device that provides an electromotive force.  It 

may be just a battery that provides a constant EMF, or it may be a generator that provides 

something like tEE = cosˆ .  It doesn’t matter much what the “Load” is at the right.  I am just 

interested in what happens in the cable connecting them when we close the switch.   

 

   By the “cable” I mean both the outgoing and the returning wire together.   I have drawn the 

outgoing and returning wires of the cable as if they are well separated.  In practice they may be 

very close together.  For example, they could be twisted around each other in a DNA-like double 

helix.  Or the cable could be a coaxial cable. In the former case the cable may have a considerable 

inductance per unit length.  In the latter case it may have a considerable capacitance per unit length.  

Another possibility is that, with the wires close together, there may be a small leak of electricity 

between the outgoing and returning wires of the cable. 

 

  When we close the switch, a length x of the cable presents some sort of impedance to the flow of 

electricity which is equivalent to the circuit shown below in figure XIII.18 

 

 

 

Load EMF 

FIGURE XIII.17 
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   In the figure, R  represents the resistance per unit length ( m−1) of the cable.  This includes the 

resistance of the outgoing and the returning wires; since they are in series I combine than as a 

single resistance xR   Likewise L represents the inductance per unit length (H m−1) of the cable.  

This includes the self inductances of the two wires as well as the mutual inductance between them. 

C represents the capacitance per unit length (F m−1) of the cable, and G represents the conductance 

per unit length (S m−1) of the insulation between the wires. 

 

    The potential along the circuit and the current through it are both functions of x and of t.  We can 

take the potential to be zero at any arbitrary point.  I choose to take the point D to have zero 

potential, 

 

   At some instant, when the current (which is the same in both wires) is I and its rate of change is 

I , the potential drop from A to B is LdxIIRdx + .  (Carefully note the signs.)  Thus the potential 

gradient down the wire is given by 

 

t

I
LIR

x

V




−−=




.     13.13.1 

 

   Likewise the current at C is less than the current at A by  xCVxVG +  .  [V is the potential 

difference between B and D, or the potential at B, since we are taking the potentail at D to be zero. 

FIGURE XIII.18 
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The term xVG is just Ohm’s Law.  The term xCV  is the rate at which the capacitor (of 

capacitance xC ) is accumulating charge.]  Thus the current gradient down the wire is 
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
.     13.13.2 

 

   Differentiate equation 13.13.3 with respect to x and equation 13.13.2 with respect to t and 

eliminate the mixed partial second derivatives to obtain 

 

                                .0)(
2

2

2

2

=−



+−




−




RGV

t

V
LGRC

t

V
LC

x

V
             13.13.3 

    

   By differentiating equation 13.13.1 with respect to t and equation 13.13.2 with respect to x, one 

obtains a similar equation in the current: 
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  Any of the equations 13.13.1-4 are referred to as the “telephonist’s” or the “telegrapher’s” 

equations, and they tell you how the potential and current vary down the wire in space and in time. 

 

  The solutions of these equations, which will depend on the relative sizes of the elements in the 

equation and on the initial conditions, are best left to those who have taken courses in partial 

differential equations more recently than I.  I can say that there will be two parts to the solution.  

There will be a transient solution that dies out either slowly (if R and C are large and L is small) or 

rapidly (if otherwise). Although the transient is only ephemeral, the maximum current during the 

brief period may be quite high, and it is often during the transient phase that a fuse will blow. You 

have often noticed that a fuse blows at the moment when you switch on. After the transient has died 

down, there will remain a steady-state solution.  If the EMF is from a battery, the steady-state 

solution will, of course, be a steady current.   If the EMF is sinusoidal, so will the steady state 

solution be. 

 

  There is an easy solution in the case where the resistance per unit length of the wire, and the 

conductance of the insulation separating the outgoing and returning wires, are small.  At this point 

you will be (or ought to be) asking:  “Small?  Small compared with what?”   So let’s say R  is small 

compared with CL /. , and G is small compared with LC / .    CL /.  has the same dimensions 

as resistance, and is known as the characteristic impedance of the line. If we put R and G equal to 

zero in equation 13.3.1, so that we have an ideal lossless cable, and the transmission of the potential 

is governed by its inductance and capacitance per unit length alone, the equation becomes simply 
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and we see that the signal is transmitted down the wire at a speed of 
LC

1
.  Typical order-or-

magnitude values for a telephone cable might be about  11105 −=C  F m−1, and 7105 −=L  H 

m−1, giving a speed of about 8102   m s−1 or about 
3
2  of the speed of light in vacuo. 


