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CHAPTER 6 

MAGNETIC EFFECT OF AN ELECTRIC CURRENT 

 

 

6.1  Introduction 

 

Most of us are familiar with the more obvious properties of magnets and compass 

needles.  A magnet, often in the form of a short iron bar, will attract small pieces of iron 

such as nails and paper clips.  Two magnets will either attract each other or repel each 

other, depending upon their orientation.  If a bar magnet is placed on a sheet of paper and 

iron filings are scattered around the magnet, the iron filings arrange themselves in a 

manner that reminds us of the electric field lines surrounding an electric dipole.  All in 

all, a bar magnet has some properties that are quite similar to those of an electric dipole.  

The region of space around a magnet within which it exerts its magic influence is called a 

magnetic field, and its geometry is rather similar to that of the electric field around an 

electric dipole – although its nature seems a little different, in that it interacts with iron 

filings and small bits of iron rather than with scraps of paper or pith-balls. 

 

The resemblance of the magnetic field of a bar magnet to the electric field of an electric 

dipole was sometimes demonstrated in Victorian times by means of a Robison Ball-ended 

Magnet, which was a magnet shaped something like this:  

 

 

 

 

 

 

 

The geometry of the magnetic field (demonstrated, for example, with iron filings) then 

greatly resembled the geometry of an electric dipole field.  Indeed it looked as though a 

magnet had two poles (analogous to, but not the same as, electric charges), and that one 

of them acts as a source for magnetic field lines (i.e. field lines diverge from it), and the 

other acts as a sink (i.e. field lines converge to it).   Rather than calling the poles 

“positive” and “negative”, we somewhat arbitrarily call them “north” and “south” poles, 

the “north” pole being the source and the “south” pole the sink.  By experimenting with 

two or more magnets, we find that like poles repel and unlike poles attract. 

 

We also observe that a freely-suspended magnet (i.e. a compass needle) will orient itself 

so that one end points approximately north, and the other points approximately south, and 

it is these poles that are called the “north” and “south” poles of the magnet. 

 

Since unlike poles attract, we deduce (or rather William Gilbert, in his 1600 book De 

Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure deduced) that Earth 

itself acts as a giant magnet, with a south magnetic pole somewhere in the Arctic and a 

north magnetic pole in the Antarctic.  The Arctic magnetic pole is at present in Bathurst 

Island in northern Canada and is usually marked in atlases as the “North Magnetic Pole”, 
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though magnetically it is a sink, rather than a source.  The Antarctic magnetic pole is at 

present just offshore from Wilkes Land in the Antarctic continent.   The Antarctic 

magnetic pole is a source, although it is usually marked in atlases as the “South Magnetic 

Pole”.  Some people have advocated calling the end of a compass needle that points north 

the “north-seeking pole”, and the other end the “south-seeking pole.  This has much to 

commend it, but usually, instead, we just call them the “north” and “south” poles.  

Unfortunately this means that the Earth’s magnetic pole in the Arctic is really a south 

magnetic pole, and the pole in the Antarctic is a north magnetic pole.   

 

The resemblance of the magnetic field of a bar magnet to a dipole field, and the very 

close resemblance of a “Robison Ball-ended Magnet” to a dipole, with a point source (the 

north pole) at one end and a point sink (the south pole) at the other, is, however, 

deceptive. 

 

In truth a magnetic field has no sources and no sinks.  This is even expressed as one of 

Maxwell’s equations, div B = 0, as being one of the defining characteristics of a magnetic 

field.   The magnetic lines of force always form closed loops.  Inside a bar magnet (even 

inside the connecting rod of a Robison magnet) the magnetic field lines are directed from 

the south pole to the north pole.  If a magnet, even a Robison magnet, is cut in two, we do 

not isolate two separate poles.  Instead each half of the magnet becomes a dipolar magnet 

itself. 

 

All of this is very curious, and matters stood like this until Oersted made an outstanding 

discovery in 1820 (it is said while giving a university lecture in Copenhagen), which 

added what may have seemed like an additional complication, but which turned out to be 

in many ways a great simplification.  He observed that, if an electric current is made to 

flow in a wire near to a freely suspended compass needle, the compass needle is 

deflected.  Similarly, if a current flows in a wire that is free to move and is near to a fixed 

bar magnet, the wire experiences a force at right angles to the wire. 

 

From this point on we understand that a magnetic field is something that is primarily 

associated with an electric current.  All the phenomena associated with magnetized iron, 

nickel or cobalt, and “lodestones” and compass needles are somehow secondary to the 

fundamental phenomenon that an electric current is always surrounded by a magnetic 

field.   Indeed, Ampère speculated that the magnetic field of a bar magnet may be caused 

by many circulating current loops within the iron.  He was right! – the little current loops 

are today identified with electron spin. 

 

If the direction of the magnetic field is taken to be the direction of the force on the north 

pole of a compass needle, Oersted’s observation showed that the magnetic field around a 

current is in the form of concentric circles surrounding the current.  Thus in figure VI.2,  

the current is assumed to be going away from you at right angles to the plane of your 

computer screen (or of the paper, if you have printed this page out), and the magnetic 

field lines are concentric circles around the current,    
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In the remainder of this chapter, we shall no longer be concerned with magnets, compass 

needles and lodestones.  These may come in a later chapter.  In the remainder of this 

chapter we shall be concerned with the magnetic field that surrounds an electric current. 

 

 

 

6.2   Definition of the Amp 

 

We have seen that an electric current is surrounded by a magnetic field; and also that, if a 

wire carrying a current is situated in an external magnetic field, it experiences a force at 

right angles to the current.  It is therefore not surprising that two current-carrying wires 

exert forces upon each other. 

 

More precisely, if there are two parallel wires each carrying a current in the same 

direction, the two wires will attract each other with a force that depends on the strength 

of the current in each, and the distance between the wires. 

 

Definition.  One amp (also called an ampère) is that steady current which, flowing in 

each of two parallel wires of negligible cross-section one metre apart in vacuo, gives rise 

to a force between them of 2 × 10
−7

 newtons per metre of their length. 

 

At last!  We now know what an amp is, and consequently we know what a coulomb, a 

volt and an ohm are.  We have been left in a state of uncertainty until now.  No longer! 

 

But you may ask:  Why the factor 2 × 10
−7

?  Why not define an amp in such a manner 

that the force is 1 N m
−1

?  This is a good question, and its answer is tied to the long and 

tortuous history of units in electromagnetism.  I shall probably discuss this history, and 

the various “CGS” units, in a later chapter.  In brief, it took a long time to understand that 

electrostatics, magnetism and current electricity were all aspects of the same basic 
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phenomena, and different systems of units developed within each topic.  In particular a 

so-called “practical” unit, the amp (defined in terms of the rate of deposition of silver 

from an electrolytic solution) became so entrenched that it was felt impractical to 

abandon it.  Consequently when all the various systems of electromagnetic units became 

unified in the twentieth century (starting with proposals by Giorgi based on the metre, 

kilogram and second (MKS) as long ago as 1895) in the “Système International” (SI), it 

was determined that the fundamental unit of current should be identical with what had 

always been known as the ampère.  (The factor 2, by the way, is not related to their being 

two wires in the definition.)  The amp is the only SI unit in which any number other than 

“one” is incorporated into its definition, and the exception was forced by the desire to 

maintain the amp. 

 
[A proposal to be considered (and probably passed) by the Conférence Générale des Poids et Mesures in 

2018 would re-define the coulomb in such a manner that the magnitude of the charge on a single electron is 

exactly 1.60217 % 10
−19 C.] 

 

One last point before leaving this section.  In the opening paragraph I wrote that “It is 

therefore not surprising that two current-carrying wires exert forces upon each other.”  

Yet when I first learned, as a student, of the mutual attraction of two parallel electric 

currents, I was very astonished indeed.  The reason why this is astonishing is discussed in 

Chapter 15 (Special Relativity) of the Classical Mechanics section of these notes. 

 

 

6.3  Definition of the Magnetic Field 

 

We are going to define the magnitude and direction of the magnetic field entirely by 

reference to its effect upon an electric current, without reference to magnets or 

lodestones.  We have already noted that, if an electric current flows in a wire in an 

externally-imposed magnetic field, it experiences a force at right angles to the wire. 

 

I want you to imagine that there is a magnetic field in this room, originating, perhaps, 

from some source outside the room.  This need not entail a great deal of imagination, for 

there already is such a magnetic field – namely, Earth’s magnetic field.  I’ll tell you that 

the field within the room is uniform, but I shan’t tell you anything about either its 

magnitude or its direction. 

 

You have a straight wire and you can pass a current through it.  You will note that there is 

a force on the wire.  Perhaps we can define the direction of the field as being the direction 

of this force.  But this won’t do at all, because the force is always at right angles to the 

wire no matter what its orientation!  We do notice, however, that the magnitude of the 

force depends on the orientation of the wire; and there is one unique orientation of the 

wire in which it experiences no force at all.   Since this orientation is unique, we choose 

to define the direction of the magnetic field as being parallel to the wire when the 

orientation of the wire is such that it experiences no force. 
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This leaves a two-fold ambiguity since, even with the wire in its unique orientation, we 

can cause the current to flow in one direction or in the opposite direction.  We still have 

to resolve this ambiguity.  Have patience for a few more lines. 

 

As we move our wire around in the magnetic field, from one orientation to another, we 

notice that, while the direction of the force on it is always at right angles to the wire, the 

magnitude of the force depends on the orientation of the wire, being zero (by definition) 

when it is parallel to the field and greatest when it is perpendicular to it. 

 

Definition.   The intensity B (also called the flux density, or field strength, or merely 

“field”) of a magnetic field is equal to the maximum force exerted per unit length on unit 

current (this maximum force occurring when the current and field are at right angles to 

each other). 

 

The dimensions of B are .QMT
LQT

MLT 11

1

2
−−

−

−

=  

 

Definition.    If the maximum force per unit length on a current of 1 amp (this maximum 

force occurring, of course, when current and field are perpendicular) is 1 N m
−1

, the 

intensity of the field is 1 tesla (T). 

 

By definition, then, when the wire is parallel to the field, the force on it is zero; and, 

when it is perpendicular to the field, the force per unit length is IB newtons per metre. 

 

It will be found that, when the angle between the current and the field is θ, the force per 

unit length, 'F , is 

 

    .sin' θ= IBF          6.3.1 

In vector notation, we can write this as 

 

    ,BIF' ××××=           6.3.2 

 

where, in choosing to write BI ×××× rather than ,IBF' ××××=  we have removed the two-

fold ambiguity in our definition of the direction of B.  Equation 6.3.2 expresses the 

“right-hand rule” for determining the relation between the directions of the current, field 

and force. 

 

 

6.4   The Biot-Savart Law 

 

Since we now know that a wire carrying an electric current is surrounded by a magnetic 

field, and we have also decided upon how we are going to define the intensity of a 

magnetic field, we want to ask if we can calculate the intensity of the magnetic field in 

the vicinity of various geometries of electrical conductor, such as a straight wire, or a 

plane coil, or a solenoid.  When we were calculating the electric field in the vicinity of 
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various geometries of charged bodies, we started from Coulomb’s Law, which told us 

what the field was at a given distance from a point charge.  Is there something similar in 

electromagnetism which tells us how the magnetic field varies with distance from an 

electric current?  Indeed there is, and it is called the Biot-Savart Law. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.3 shows a portion of an electrical circuit carrying a current I .  The Biot-Savart 

Law tells us what the contribution δB is at a point P from an elemental portion of the 

electrical circuit of length δs at a distance r from P, the angle between the current at δs 

and the radius vector from P to δs being θ.  The Biot-Savart Law tells us that 

 

    .sin
2

r

sI
B

θδ
∝δ          6.4.1 

 

This law will enable us, by integrating it around various electrical circuits, to calculate 

the total magnetic field at any point in the vicinity of the circuit. 

 

But – can I prove the Biot-Savart Law, or is it just a bald statement from nowhere?  The 

answer is neither.  I cannot prove it, but nor is it merely a bald statement from nowhere.  

First of all, it is a not unreasonable guess to suppose that the field is proportional to I and 

to δs, and also inversely proportional to r
2
, since δs, in the limit, approaches a point 

source.  But you are still free to regard it, if you wish, as speculation, even if reasonable 

speculation.  Physics is an experimental science, and to that extent you cannot “prove” 

anything in a mathematical sense; you can experiment and measure.  The Biot-Savart law 

enables us to calculate what the magnetic field ought to be near a straight wire, near a 

plane circular current, inside a solenoid, and indeed near any geometry you can imagine.  

So far, after having used it to calculate the field near millions of conductors of a myriad 

shapes and sizes, the predicted field has always agreed with experimental measurement.  

Thus the Biot-Savart law is likely to be true – but you are perfectly correct in asserting 

that, no matter how many magnetic fields it has correctly predicted, there is always the 

chance that, some day, it will predict a field for some unusually-shaped circuit that 

disagrees with what is measured.  All that is needed is one such example, and the law is 

disproved.  You may, if you wish, try and discover, for a Ph.D. project, such a circuit; but 

I would not recommend that you spend your time on it! 

δs 

I 

P1111 
δB 

r 

θ 

FIGURE VI.3 
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There remains the question of what to write for the constant of proportionality.  We are 

free to use any symbol we like, but, in modern notation, we symbol we use is .
4

0

π

µ
  Why 

the factor 4π?   The inclusion of 4π gives us what is called a “rationalized” definition, 

and it is introduced for the same reasons that we introduced a similar factor in the 

constant of proportionality for Coulomb’s law, namely that it results in the appearance of 

4π in spherically-symmetric geometries, 2π in cylindrically-symmetric geometries, and 

no π where the magnetic field is uniform.  Not everyone uses this definition, and this will 

be discussed in a later chapter, but it is certainly the recommended one. 

 

In any case, the Biot-Savart Law takes the form 

 

    .sin

4 2

0

r

sI
B

θδ

π

µ
=δ         6.4.2 

 

The constant µ0 is called the permeability of free space, “free space” meaning a vacuum.  

The subscript allows for the possibility that if we do an experiment in a medium other 

than a vacuum, the permeability may be different, and we can then use a different 

subscript, or none at all.  In practice the permeability of air is very little different from 

that of a vacuum, and hence I shall normally use the symbol µ0 for experiments 

performed in air, unless we are discussing measurement of very high precision. 

 

From equation 6.4.2, we can see that the SI units of permeability are T m A
−1

  (tesla 

metres per amp).  In a later chapter we shall come across another unit – the henry – for a 

quantity (inductance) that we have not yet described, and we shall see then that a more 

convenient unit for permeability is H m
−1

 (henrys per metre) – but we are getting ahead 

of ourselves. 

 

What is the numerical value of µ0?   I shall reveal that in the next chapter. 

 

Exercise.   Show that the dimensions of permeability are MLQ
−2

.   This means that you 

may, if you wish, express permeability in units of kg m C
−2

 – although you may get some 

queer looks if you do. 

 

Thought for the Day. 

 

  

 

 

 

The sketch shows two current elements, each of length δs, the current being the same in 

each but in different directions.  Is the force on one element from the other equal but 

opposite to the force on the other from the one?  If not, is there something wrong with 

Newton’s third law of motion?  Discuss this over lunch. 

I,  δs 
I,  δs 
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6.5   Magnetic Field Near a Long, Straight, Current-carrying Conductor 

 

   

 

 

 

 

 

 

 

 

 

 

Consider a point P at a distance a from a conductor carrying a current I (figure VI.4).  

The contribution to the magnetic field at P from the elemental length dx is 

 

          .
cos.

4 2r

dxI
dB

θ

π

µ
=           6.5.1 

 

(Look at the way I have drawn θ if you are worried about the cosine.) 

 

Here I have omitted the subscript zero on the permeability to allow for the possibility that 

the wire is immersed in a medium in which the permeability is not the same as that of a 

vacuum.  (The permeability of liquid oxygen, for example, is slightly greater than that of 

free space.)  The direction of the field at P is into the plane of the “paper” (or of your 

computer screen). 

 

We need to express this in terms of one variable, and we’ll choose θ.  We can see that 

θ= secar  and ,tan θ= ax  so that .sec2 θθ= dadx   Thus equation 6.5.1 becomes 

 

    .sin
4

θθ
π

µ
= d

a

I
dB          6.5.2 

 

Upon integrating this from −π/2 to + π/2  (or from 0 to π/2 and then double it), we find 

that the field at P is 

 

         .
2 a

I
B

π

µ
=          6.5.3 

 

Note the 2π in this problem with cylindrical symmetry. 

 

P 

O 

a 

dx 
x 

θ 

r 

FIGURE VI.4 
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6.6    Field on the Axis and in the Plane of a Plane Circular Current-carrying Coil 

 

I strongly recommend that you compare and contrast this derivation and the result with 

the treatment of the electric field on the axis of a charged ring in Section 1.6.4 of Chapter 

1.  Indeed I am copying the drawing from there and then modifying it as need be. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

The contribution to the magnetic field at P from an element δs of the current is 

)(4 22
xa

sI

+π

δµ
in the direction shown by the coloured arrow. By symmetry, the total 

component of this from the entire coil perpendicular to the axis is zero, and the only 

component of interest is the component along the axis, which is 
)(4 22

xa

sI

+π

δµ
times sin θ. 

 
The integral of δs around the whole coil is just the circumference of the coil, 2πa, and if 

we write 
2/122 )(

sin
xa

a

+
=θ , we find that the field at P from the entire coil is 

 

    ,
)(2 2/322

2

xa

Ia
B

+

µ
=          6.6.1 

 

or N times this if there are N turns in the coil.  At the centre of the coil the field is 

 

    .
2a

I
B

µ
=           6.6.2 

 

The field is greatest at the centre of the coil and it decreases monotonically to zero at 

infinity.  The field is directed to the left in figure IV.5. 

 

 

We can calculate the field in the plane of the ring as follows. 

a 

x 

δs 

θ 
P 

FIGURE VI.5 
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Consider an element of the wire at Q of length φad .  The angle between the current at Q 

and the line PQ is 90º − (θ  −  φ).   The contribution to the B-field at P from the current I  

this element is 

 

.
)cos(.

4 2

0

r

dIa φφ−θ

π

µ
 

 

The field from the entire ring is therefore 

θ φ 

O P 

Q 

x 

r 

a 
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,
)cos(

4

2
2

0

0 r

dIa φφ−θ

π

µ π

∫  

 

where          ,cos2222 φ−+= axxar  

and           .
2

)cos(
222

ar

xra −+
=φ−θ  

 

This requires a numerical integration.   The results are shown in the following graph, in 

which the abscissa, x, is the distance from the centre of the circle in units of its radius, 

and the ordinate, B, is the magnetic field in units of its value )2/(0 aIµ at the centre.   

Further out than x = 0.8, the field increases rapidly. 
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Magnetic field in the plane of a ring current.
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 6.7   Helmholtz Coils 

 

Let us calculate the field at a point halfway between two identical parallel plane coils.  If 

the separation between the coils is equal to the radius of one of the coils, the arrangement 

is known as “Helmholtz coils”, and we shall see why they are of particular interest.  To  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

begin with, however, we’ll start with two coils, each of radius a, separated by a distance 

2c. 

 

There are N turns in each coil, and each carries a current I. 

 

The field at P is 

 

  .
])([

1

])([

1

2 2/3222/322

2










++
+

−+

µ
=

xcaxca

NIa
B       6.7.1 

 

At the origin (x = 0), the field is 

 

   .
)( 2/322

2

ca

NIa
B

+

µ
=           6.7.2 

 

(What does this become if c = 0?  Is this what you’d expect?) 

 

If we express B in units of µNI/(2a) and c and x in units of a, equation 6.7.1 becomes 

 

      .
])(1[

1

])(1[

1
2/322/32

xcxc
B

++
+

−+
=        6.7.4 

 

x 

y 

c 

a 

P 

FIGURE VI.6 
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Figure VI.7 shows the field as a function of x for three values of c.  The coil separation is 

2c, and distances are in units of the coil radius a.  Notice that when c = 0.5, which means 

that the coil separation is equal to the coil radius, the field is uniform over a large range, 

and this is the usefulness of the Helmholtz arrangement for providing a uniform field.  If 

you are energetic, you could try differentiating equation 6.7.4 twice with respect to x and 

show that the second derivative is zero when c = 0.5. 

 

For the Helmholtz arrangement the field at the origin is .7155.0.
25

58

a

NI

a

NI µ
=

µ
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6.8   Field on the Axis of a Long Solenoid 
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The solenoid, of radius a, is wound with n turns per unit length of a wire carrying a 

current in the direction indicated by the symbols 1 and ?.  At a point O on the axis of 

the solenoid the contribution to the magnetic field arising from an elemental ring of width 

δx (hence having  n δx turns) at a distance x from O is 

 

   .
)(

.
2)(2 2/322

3

2/322

2

xa

xa

a

nI

xa

aIxn
B

+

δµ
=

+

δµ
=δ        6.8.1 

 

This field is directed towards the right. 

 

Let us express this in terms of the angle θ. 

We have   .cos
)(

and,sec,tan 3

2/322

3
2 θ=

+
δθθ=δθ=

xa

a
axax   Equation 6.8.1 

becomes 

 

   .cos
2
1 θµ=δ nIB           6.8.2 

 

If the solenoid is of infinite length, to find the field from the entire infinite solenoid, we 

integrate from θ  =  π/2  to 0 and double it.   Thus 

 

   ∫
π

θθµ=
2/

0
.cos dnIB         6.8.3 

 

Thus the field on the axis of the solenoid is 

 

       .nIB µ=             6.8.4 

 

This is the field on the axis of the solenoid.  What happens if we move away from the 

axis?  Is the field a little greater as we move away from the axis, or is it a little less?  Is 

the field a maximum on the axis, or a minimum?  Or does the field go through a 

maximum, or a minimum, somewhere between the axis and the circumference?  We shall 

answer these questions in section 6.11. 

 

 

6.9   The Magnetic Field H 

 

If you look at the various formulas for the magnetic field B near various geometries of 

conductor, such as equations 6.5.3, 6.6.2, 6.7.1, 6.8.4, you will see that there is always a 

µ on the right hand side.  It is often convenient to define a quantity H = B/µ.   Then these 

equations become just 
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    ,
2 a

I
H

π
=           6.9.1 

 

    ,
2a

I
H =           6.9.2 

 

 ,
])([

1

])([

1

2 2/3222/322

2










++
+

−+
=

xcaxca

NIa
H        6.9.3 

 

    .nIH =         6.9.10 

 

It is easily seen from any of these equations that the SI units of H are A m
−1

, or amps per 

metre, and the dimensions are QT
−1

M
−1

. 

 

Of course the magnetic field, whether represented by the quantity B or by H, is a vector 

quantity, and the relation between the two representations can be written 

 

    B  =  µH.                      6.9.11   

 

In an isotropic medium B and H are parallel, but in an anisotropic medium they are not 

parallel (except in the directions of the eigenvectors of the permeability tensor), and 

permeability is a tensor.  This was discussed in section 1.7.1 with respect to the equation 

.ED ε=  

 

 

6.10    Flux 

 

Recall from Section 1.8 that we defined two extensive scalar quantities ∫∫ •=Φ AE dE  

and ,D ∫∫ •=Φ AD d  which I called the E-flux and the D-flux.   In an entirely similar 

manner I can define the B-flux and H-flux of a magnetic field by 

 

        ∫∫ •=Φ AB dB        6.10.1 

 

and        .H ∫∫ •=Φ AH d                   6.10.2 

 

The SI unit of ΦB is the tesla metre-squared, or T m
2
, also called the weber Wb. 

 

A summary of the SI units and dimensions of the four fields and fluxes might not come 

amiss here. 

 

 E   V m
−1

    MLT
−2

Q
−1 

 D   C m
−2

    L
−2

Q 
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 B   T    MT
−1

Q
−1

 

 H   A m
−1

    L
−1

T
−1

Q 

 ΦE   V m    ML
3
T

−2
Q

−1 

 ΦD   C    Q 

 ΦB   Wb    ML
2
T

−1
Q

−1 

 ΦH   A m    LT
−1

Q 

 

6.11    Ampère’s Theorem 

 

In Section 1.9 we introduced Gauss’s theorem, which is that the total normal component 

of the D-flux through a closed surface is equal to the charge enclosed within that surface.  

Gauss’s theorem is a consequence of Coulomb’s law, in which the electric field from a 

point source falls off inversely as the square of the distance.  We found that Gauss’s 

theorem was surprisingly useful in that it enabled us almost immediately to write down 

expressions for the electric field in the vicinity of various shapes of charged bodies 

without going through a whole lot of calculus. 

 

Is there perhaps a similar theorem concerned with the magnetic field around a current-

carrying conductor that will enable us to calculate the magnetic field in its vicinity 

without going through a lot of calculus?  There is indeed, and it is called Ampère’s 

Theorem. 
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In figure VI.9 there is supposed to be a current I coming towards you in the middle of the 

circle.  I have drawn one of the magnetic field lines – a dashed line of radius r.  The 

strength of the field there is H = I/(2πr).  I have also drawn a small elemental length ds on 

the circumference of the circle.  The line integral of the field around the circle is just H 

times the circumference of the circle.  That is, the line integral of the field around the 

circle is just I.  Note that this is independent of the radius of the circle.  At greater 

distances from the current, the field falls off as 1/r, but the circumference of the circle 

increases as r, so the product of the two (the line integral) is independent of r. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consequently, if I calculate the line integral around a circuit such as the one shown in 

figure VI.10, it will still come to just I.  Indeed it doesn’t matter what the shape of the 

path is.  The line integral is ∫ • dsH .   The field H at some point is perpendicular to the 

line joining the current to the point, and the vector ds is directed along the path of 

integration, and  dsH • is equal to H times the component of ds along the direction of H, 

so that, regardless of the length and shape of the path of integration: 

 

The line integral of the field H around any closed path is equal to the current enclosed by 

that path. 

 

This is Ampère’s Theorem. 

 

? 

FIGURE VI.10 
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So now let’s do the infinite solenoid again.  Let us calculate the line integral around the 

rectangular amperian path shown in figure VI.11.  There is no contribution to the line 

integral along the vertical sides of the rectangle because these sides are perpendicular to 

the field, and there is no contribution from the top side of the rectangle, since the field 

there is zero (if the solenoid is infinite).  The only contribution to the line integral is along 

the bottom side of the rectangle, and the line integral there is just Hl, where l is the length 

of the rectangle.  If the number turns of of wire per unit length along the solenoid is n, 

there will be nl turns enclosed by the rectangle, and hence the current enclosed by the 

rectangle is nlI, where I is the current in the wire.  Therefore by Ampère’s theorem, Hl = 

nlI, and so H = nI, which is what we deduced before rather more laboriously.  Here H is 

the strength of the field at the position of the lower side of the rectangle; but we can place 

the rectangle at any height, so we see that the field is nI anywhere inside the solenoid.  

That is, the field inside an infinite solenoid is uniform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is perhaps worth noting that Gauss’s theorem is a consequence of the inverse square 

diminution of the electric field with distance from a point charge, and Ampère’s theorem 

is a consequence of the inverse first power diminution of the magnetic field with distance 

from a line current. 

 

Example. 

Here is an example of the calculation of a line integral (figure VI.12) 
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FIGURE VI.11 
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An electric current I flows into the plane of the paper at the origin of coordinates. 

Calculate the line integral of the magnetic field along the straight line joining the points 

(0 , a) and (a , a). 

 

In figure VI.13 I draw a (circular) line of force of the magnetic field H, and a vector dx 

where the line of force crosses the straight line of interest. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The line integral along the elemental length dx is H . dx  =  H dx cos θ .  Here 

2/122 )(2 xa

I
H

+π
=   and 

2/122 )(
cos

xa

a

+
=θ , and so the line integral along dx is 

.
)(2 22

xa

dxaI

+π
  Integrate this from x = 0 to x  =  a and you will find that the answer is I/8. 

 

Figure VI.14 shows another method.   The line integral around the square is, by Ampère’s 

theorem, I, and so the line integral an eighth of the way round is I/8. 

 

You will probably immediately feel that this second method is much the better and very 

“clever”.  I do not deny this, but it is still worthwhile to study carefully the process of line 

integration in the first method. 

 

1I 

(a , a) (0 , a) FIGURE VI.13 
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Another Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An electric current I flows into the plane of the paper.  Calculate the line integral of the 

magnetic field along a straight line of length 2a whose mid-point is at a distance 3/a  
from the current.    
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FIGURE VI.14 
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If you are not used to line integrals, I strongly urge you to do it by integration, as we did 

in the previous example.  Some readers, however, will spot that the line is one side of an 

equilateral triangle, and so the line integral along the line is just .
3
1 I  

 

We can play this game with other polygons, of course, but it turns out to be even easier 

than that. 

 

For example: 

 

 

 

 

 

 

 

 

 

 

 

Show, by integration, that the line integral of the magnetic H-field along the thick line is 

just  
π

θ

2
 times I. 

 

After that it won’t take long to convince yourself that the line integral along the thick line 

in the drawing below is also 
π

θ

2
 times I. 
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Another Example 

 

A straight cylindrical metal rod (or a wire for that matter) of radius a carries a current I.  

At a distance r from the axis, the magnetic field is clearly I/(2πr) if r > a.   But what is 

the magnetic field inside the rod at a distance r from the axis, r < a? 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.15 shows the cross-section of the rod, and I have drawn an amperian circle of 

radius r.  If the field at the circumference of the circle is H, the line integral around the 

circle is 2πrH.  The current enclosed within the circle is Ir
2
/a

2
.  These two are equal, and 

therefore H  = Ir/(2πa
2
). 

 

More and More Examples 

 

In the above example, the current density was uniform.  But now we can think of lots and 

lots of examples in which the current density is not uniform.   For example, let us 

imagine that we have a long straight hollow cylindrical tube of radius a, perhaps a linear 

particle accelerator, and the current density J (amps per square metre) varies from the 

middle (axis) of the cylinder to its edge according to )./1()( 0 arJrJ −=   The total 

current is, of course, ,)(2 0
2

3
1

0
JardrrJI

a
π=π= ∫ and the mean current density is 

03
1 JJ = .     

 

The question, however, is: what is the magnetic field H at a distance r from the axis?   

Further, show that the magnetic field at the edge (circumference) of the cylinder is aJ06
1 , 

and that the field reaches a maximum value of aJ016
3   at .

4
3 ar =  

 

Well, the current enclosed within a distance r from the axis is  

 

),1()(2
3
22

00 a
rr

rJxdxxJI −π=π= ∫  

FIGURE VI.15 
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and this is equal to the line integral of the magnetic field around a circle of radius r, 

which is .2 rHπ   Thus 

).1(
3
2

02
1

a
rrJH −=  

At the circumference of the cylinder, this comes to .06
1 aJ    Calculus shows that H 

reaches a maximum value of aJ016
3  at .

4
3 ar =   The graph below shows )/( 0aJH as a 

function of x/a.   
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Having whetted our appetites, we can now try the same problem but with some other 

distributions of current density, such as   

 

.1)(,1)(,1)(,1)(
2

2

002

2

00

4321

a

kr
JrJ

a
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JrJ

a
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JrJ
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








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






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The mean current density is  ∫=
a

drrJr
a

J
02

)(
2

, and the total current is 2
aπ  times this. 

The magnetic field is ∫=
r

dxxJx
r

rH
0

)(
1

)( . 

Here are the results:  
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I have not calculated explicit formulas for the positions and values of the maxima. 

A maximum occurs inside the cylinder if k > 0.908901. 

 

 

 

 

 



 27 

4.    

[ ]

.11
3

)(

,)1(1
3

2
,1

2/3

2

22
0

2/30

2

2

0

























−−=

−−=−=

a

kr

kr

aJ
rH

k
k

J
J

a

kr
JJ

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r/a

J
/J

0

k = 0.0

k = 0.2

k = 0.4

k = 0.6

k = 0.8

k = 1.0

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

r/a

J
/J

0

k = 0.0

k = 0.2

k = 0.4

k = 0.6

k = 0.8

k = 1.0

 
 
A maximum occurs inside the cylinder if k > 0.866025. 

 

 
In all of these cases, the condition that there shall be no maximum H inside the cylinder  

– that is, between r =  0 and r =  a    −  is that .
2

1)(
>

J

aJ
   I believe this to be true for any 

axially symmetric current density distribution, though I have not proved it.  I expect that 

a fairly simple proof could be found by someone interested. 
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Additional current density distributions that readers might like to investigate are 
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6.12   Boundary Conditions 

 

 We recall from Chapter 5, Section 5.14, that, at a boundary between two media of 

different permittivities, the normal component of  D and the tangential component of E 

are continuous, while the tangential component of D is proportional to ε and the normal 

component of E is inversely proportional to ε.  The lines of electric force are refracted at 

a boundary in such a manner that .
tan

tan

2

1

2

1

ε

ε
=

θ

θ
 

 

  The situation is similar with magnetic fields.  That is, at a boundary between two media 

of different permeabilities, the normal component of  B and the tangential component of 

H are continuous, while the tangential component of B is proportional to µ and the 

normal component of H is inversely proportional to µ.  The lines of magnetic force are 

refracted at a boundary in such a manner that .
tan

tan

2

1

2

1

µ

µ
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θ

θ
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   The configuration of the magnetic field inside an infinitely long solenoid with materials 

of different permeabilities needs some care.  We shall be guided by the Biot-Savart law, 

namely   ,
4

sin

r

Ids
B

π

θµ
=   and Ampère’s law, namely that the line integral of H around a 

closed circuit is equal to the enclosed current.  We also recall that the magnetic field 

inside an infinite solenoid containing a single homogeneous isotropic material is uniform, 

is parallel to the axis of the solenoid, and is given by nIH = or nIB µ= . 

 

   The easiest two-material case to consider is that in which the two materials are arranged 

in parallel as in figure VI.17. 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

  One can see by applying Ampère’s law to each of the two circuits indicated by dashed 

lines that the H-field is the same in each material and is equal to nI, and is uniform 

throughout the solenoid.  It is directed parallel to the axis of the solenoid. That is, the 

tangential component of H is continuous.  The B-fields in the two materials, however, are 

different, being nI1µ in the upper material and nI2µ in the lower. 

 

   We now look at the situation in which the two materials are in series, as in figure VI.18. 

We’ll use a horizontal coordinate x, which is zero at the boundary, negative to the left of 

it, and positive to the right of it. 
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FIGURE VI.17 
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    We might at first be tempted to suppose that nIB 1µ=  to the left of the boundary and 

nIB 2µ=  to the right of the boundary, while, by an application of Ampère’s law around 

any of the dashed circuits indicated, nIH = on both sides.  Tempting though this is, it is 

not correct, and we shall see why shortly. 

 

    The B-field is indeed nI1µ  a long way to the left of the boundary, and nI2µ  a long 

way to the right.  However, near to the boundary it is between these limiting values.  We 

can calculate the B-field on the axis at the boundary by the same method that we used in 

Section 6.8 .  See especially equation 6.8, which, with the present geometry, becomes 

 

∫ θθµ∫ +θθµ= π
π−

2/

02
0

2/ 2
1

12
1 .coscos dnIdnIB   6.12.1 

 

It should come as no surprise that this comes to 

 

.)( 212
1 nIB µ+µ=     6.12.2 

 

It is the same just to the left of the boundary and just to the right. 

 

The H-field, however, drops suddenly at the boundary from nI








µ

µ
+

1

2
2
1 1 immediately to 

the left of the boundary to nI








µ

µ
+

2

1
2
1 1  immediately to the right of the boundary. 

 

In any case, the very important results from these considerations is 

 

At a boundary between two media of different permeabilities, the parallel component of 

H is continuous, and the perpendicular component of B is continuous. 

 

Compare and contrast this with the electrical case: 

 

At a boundary between two media of different permittivities, the parallel component of E 

is continuous, and the perpendicular component of D is continuous. 

 

 

 

 

 

 


