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CHAPTER 5 

CAPACITORS 

 

 

5.1    Introduction 

 

A capacitor consists of two metal plates separated by a nonconducting medium (known 

as the dielectric medium or simply the dielectric, or by a vacuum.   It is represented by 

the electrical symbol 

                                                                  

                                        . 

 

 

Capacitors of one sort or another are included in almost any electronic device.  

Physically, there is a vast variety of shapes, sizes and construction, depending upon their 

particular application.  This chapter, however, is not primarily concerned with real, 

practical capacitors and how they are made and what they are used for, although a brief 

section at the end of the chapter will discuss this.  In addition to their practical uses in 

electronic circuits, capacitors are very useful to professors for torturing students during 

exams, and, more importantly, for helping students to understand the concepts of and the 

relationships between electric fields E and D, potential difference, permittivity, energy, 

and so on.  The capacitors in this chapter are, for the most part, imaginary academic 

concepts useful largely for pedagogical purposes.  Need the electronics technician or 

electronics engineer spend time on these academic capacitors, apparently so far removed 

from the real devices to be found in electronic equipment?   The answer is surely and 

decidedly yes – more than anyone else, the practical technician or engineer must 

thoroughly understand the basic concepts of electricity before even starting with real 

electronic devices. 

 

If a potential difference is maintained across the two plates of a capacitor (for example, 

by connecting the plates across the poles of a battery) a charge +Q will be stored on one 

plate and Q on the other.  The ratio of the charge stored on the plates to the potential 

difference V across them is called the capacitance C of the capacitor.  Thus: 

 

     .CVQ       5.1.1 

 

If, when the potential difference is one volt, the charge stored is one coulomb, the 

capacitance is one farad, F.  Thus, a farad is a coulomb per volt.  It should be mentioned 

here that, in practical terms, a farad is a very large unit of capacitance, and most 

capacitors have capacitances of the order of microfarads, F. 

 

The dimensions of capacitance are .QTLM
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It might be remarked that, in older books, a capacitor was called a “condenser”, and its capacitance was 

called its “capacity”.  Thus what we would now call the “capacitance of a capacitor” was formerly called 

the “capacity of a condenser”. 

 

In the highly idealized capacitors of this chapter, the linear dimensions of the plates 

(length and breadth, or diameter) are supposed to be very much larger than the separation 

between them.  This in fact is nearly always the case in real capacitors, too, though 

perhaps not necessarily for the same reason.  In real capacitors, the distance between the 

plates is small so that the capacitance is as large as possible.  In the imaginary capacitors 

of this chapter, I want the separation to be small so that the electric field between the 

plates is uniform.  Thus the capacitors I shall be discussing are mostly like figure V.1, 

where I have indicated, in blue, the electric field between the plates:   

 

 

 

 

 

 

 

 

 

However, I shall not always draw them like this, because it is rather difficult to see what 

is going on inside the capacitor.  I shall usually much exaggerate the scale in one 

direction, so that my drawings will look more like this: 

 

  

 

 

 

 

 

 

 

 

 

 

If the separation were really as large as this, the field would not be nearly as uniform as 

indicated; the electric field lines would greatly bulge outwards near the edges of the 

plates.   

 

In the next few sections we are going to derive formulas for the capacitances of various 

capacitors of simple geometric shapes. 

 

 

 

 

 

FIGURE V.1 

FIGURE V.2 
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5.2   Plane Parallel Capacitor 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have a capacitor whose plates are each of area A, separation d, and the medium 

between the plates has permittivity .   It is connected to a battery of EMF V, so the 

potential difference across the plates is V.  The electric field between the plates is E  =  

V/d, and therefore D  =  V/d.   The total D-flux arising from the positive plate is DA, and, 

by Gauss’s law, this must equal Q, the charge on the plate.     

 

Thus ,/dAVQ   and therefore the capacitance is 

 

    .
d

A
C


       5.2.1 

 

Verify that this is dimensionally correct, and note how the capacitance depends upon , A 

and d. 

 

In Section 1.5 we gave the SI units of permittivity as C
2 

N
1 

m
2

.  Equation 5.2.1 shows 

that a more convenient SI unit for permittivity is F m
1

, or farads per metre. 

 

Question:  If the separation of the plates is not small, so that the electric field is not 

uniform, and the field lines bulge outwards at the edge, will the capacitance be less than 

or greater than A/d? 
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5.3   Coaxial Cylindrical Capacitor 

   

 

 

 

 

 

 

 

 

The radii of the inner and outer cylinders are a and b, and the permittivity between them 

is .  Suppose that the two cylinders are connected to a battery so that the potential 

difference between them is V, and the charge per unit length on the inner cylinder is + C 

m
1

, and on the outer cylinder is C m
1

.  We have seen (Subsection 2.2.3) that the 

potential difference between the cylinders under such circumstances is .)/ln(
2

ab



  

Therefore the capacitance per unit length, 'C , is 

 

    .
)/ln(

2
'

ab
C


      5.3.1 

 

This is by no means solely of academic interest.  The capacitance per unit length of 

coaxial cable (“coax”) is an important property of the cable, and this is the formula used 

to calculate it. 

 

 

 

5.4   Concentric Spherical Capacitor 

  

Unlike the coaxial cylindrical capacitor, I don’t know of any very obvious practical 

application, nor quite how you would construct one and connect the two spheres to a 

battery, but let’s go ahead all the same.  Figure V.4 will do just as well for this one. 

 

The two spheres are of inner and outer radii a and b, with a potential difference V 

between them, with charges +Q and Q on the inner and outer spheres respectively.  The 

potential difference between the two spheres is then ,
11

4










 ba

Q
 and so the 

capacitance is 

 

    .
11

4

ba

C




       5.4.1 

 

a 



b 

FIGURE V.4 
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If ,b  we obtain for the capacitance of an isolated sphere of radius a: 

 

 

    .4 aC        5.4.2 

 

 

Exercise:  Calculate the capacitance of planet Earth, of radius 6.371 × 10
3
 km, suspended 

in free space.  I make it 709 F -  which may be a bit smaller than you were expecting. 

 

 

5.5   Capacitors in Parallel 

 

  

 

 

 

 

 

 

 

 

 

The potential difference is the same across each, and the total charge is the sum of the 

charges on the individual capacitor.  Therefore: 

 

    .321 CCCC       5.5.1 

 

 

5.6   Capacitors in Series 

 

 

 

 

 

 

 

 

 

The charge is the same on each, and the potential difference across the system is the sum 

of the potential differences across the individual capacitances.  Hence 

 

    .
1111

321 CCCC
     5.6.1 
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5.7   Delta-Star Transform 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we did with resistors in Section 4.12, we can make a delta-star transform with 

capacitors.  I leave it to the reader to show that the capacitance between any two 

terminals in the left hand box is the same as the capacitance between the corresponding 

two terminals in the right hand box provided that 

 

   ,
1

211332
1

C

CCCCCC
c


     5.7.1 

 

   
2

211332
2

C

CCCCCC
c


      5.7.2 

 

and   .
3

211332
3

C

CCCCCC
c


      5.7.3 

 

The converse relations are 

 

   ,

321
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1
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       5.7.4 
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2
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       5.7.5 

 

and   .
321

21
3

ccc

cc
C


       5.7.6 
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For example, just for fun, what is the capacitance between points A and B in figure V.8, 

in which I have marked the individual capacitances in microfarads?   

  

 

 

 

 

 

 

 

 

 

 

The first three capacitors are connected in delta.  Replace them by their equivalent star 

configuration.  After that it should be straightforward.  I make the answer 2.515 F. 

 

 

5.8   Kirchhoff’s Rules 

 

We can even adapt Kirchhoff’s rules to deal with capacitors.  Thus, connect a 24 V 

battery across the circuit of figure V.8 – see figure V.9   

  

 

      

 

 

 

 

 

 

 

 

 

 

 

 

Calculate the charge held in each capacitor.  We can proceed in a manner very similar to 

how we did it in Chapter 4, applying the capacitance equivalent of Kirchhoff’s second 

rule to three closed circuits, and then making up the five necessary equations by applying 

“Kirchhoff’s first rule” to two points.  Thus: 

 

   ,0
23

24 32 
QQ

     5.8.1 
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   ,0
8

24 4
2 

Q
Q      5.8.2 

 

   ,0
43

5
2

1 
Q

Q
Q

     5.8.3 

    

   ,531 QQQ        5.8.4 

 

and   .524 QQQ        5.8.5 

 

I make the solutions 

 

.C91.20,C92.39,C44.20,C01.19,C35.41 54321  QQQQQ

 

 

5.9   Problem for a Rainy Day 

 

Another problem to while away a rainy Sunday afternoon would be to replace each of the 

resistors in the cube of subsection 4.14.1 with capacitors each of capacitance c.  What is 

the total capacitance across opposite corners of the cube?  I would start by supposing that 

the cube holds a net charge of 6Q, and I would then ask myself what is the charge held in 

each of the individual capacitors.  And I would then follow the potential drop from one 

corner of the cube to the opposite corner.  I make the answer for the effective capacitance 

of the entire cube 1.2c.  

 

 

5.10   Energy Stored in a Capacitor 
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Let us imagine (figure V.10) that we have a capacitor of capacitance C which, at some 

time, has a charge of +q on one plate and a charge of q on the other plate.  The potential 

difference across the plates is then q/C.  Let us now take a charge of +q from the bottom 

plate (the negative one) and move it up to the top plate.  We evidently have to do work to 

do this, in the amount of .q
C

q
   The total work required, then, starting with the plates 

completely uncharged until we have transferred a charge Q from one plate to the other is 

).2/(
1 2

0
CQdqq

C

Q

   This is, then, the energy E stored in the capacitor, and, by 

application of Q  = CV it can also be written ,
2
1 QVE or, more usually, 

 

     .2

2
1 CVE      5.10.1 

 

Verify that this has the correct dimensions for energy.  Also, think about how many 

expressions for energy you know that are of the form .2

2
1 ab   There are more to come. 

 

The symbol E is becoming rather over-worked.  At present I am using the  following: 

 

   E  =  magnitude of the electric field 

   E  =  electric field as a vector 

   E  = electromotive force 

   E  =  energy 

 

Sorry about that! 

 

 

5.11    Energy Stored in an Electric Field 

 

Recall that we are assuming that the separation between the plates is small compared with 

their linear dimensions and that therefore the electric field is uniform between the plates. 

 

The capacitance is dAC / , and the potential difference between the plates is Ed, 

where E is the electric field and d is the distance between the plates.  Thus the energy 

stored in the capacitor is .2

2
1 AdE   The volume of the dielectric (insulating) material 

between the plates is Ad, and therefore we find the following expression for the energy 

stored per unit volume in a dielectric material in which there is an electric field: 

 

     .2

2
1 E  

 

Verify that this has the correct dimensions for energy per unit volume. 

 

If the space between the plates is a vacuum, we have the following expression for the 

energy stored ber unit volume in the electric field 
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     2

02
1 E  

 

- even though there is absolutely nothing other than energy in the space.  Think about 

that! 

 
I mentioned in Section 1.7 that in an anisotropic medium D and E are not parallel, the permittivity then 

being a tensor quantity.  In that case the correct expression for the energy per unit volume in an electric 

field is .
2

1
ED   

 

 

5.12  Force Between the Plates of a Plane Parallel Plate Capacitor 

 

We imagine a capacitor with a charge +Q on one plate and Q on the other, and initially 

the plates are almost, but not quite, touching.  There is a force F between the plates.  Now 

we gradually pull the plates apart (but the separation remains small enough that it is still 

small compared with the linear dimensions of the plates and we can maintain our 

approximation of a uniform field between the plates, and so the force remains F as we 

separate them).   The work done in separating the plates from near zero to d is Fd, and 

this must then equal the energy stored in the capacitor, .
2
1 QV   The electric field between 

the plates is E = V/d, so we find for the force between the plates 

 

     .
2
1 QEF       5.12.1 

 

 

We can now do an interesting imaginary experiment, just to see that we understand the 

various concepts.  Let us imagine that we have a capacitor in which the plates are 

horizontal; the lower plate is fixed, while the upper plate is suspended above it from a 

spring of force constant k.  We connect a battery across the plates, so the plates will 

attract each other.  The upper plate will move down, but only so far, because the 

electrical attraction between the plates is countered by the tension in the spring.  

Calculate the equilibrium separation x between the plates as a function of the applied 

voltage V. (Horrid word!  We don’t say “metreage” for length, “kilogrammage” for mass 

or “secondage” for time – so why do we say “voltage” for potential difference and 

“acreage” for area?  Ugh!)  We should be able to use our invention as a voltmeter – it 

even has an infinite resistance! 

 

Refer to figure V.11. 

 

 

  

 

 

 

 

 

k 

x 

a - x 

FIGURE V.11 
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We’ll suppose that the separation when the potential difference is zero is a, and the 

separation when the potential difference is V is x, at which time the spring has been 

extended by a length a x. 

The electrical force between the plates is QE
2
1 .  Now ,and0

x

V
E

x

AV
CVQ 


  

so the force between the plates is .
2 2

2
0

x

AV
  Here A is the area of each plate and it is 

assumed that the experiment is done in air, whose permittivity is very close to 0.  The 

tension in the stretched spring is k(a x), so equating the two forces gives us 

 

 

    .
)(2

0

2
2

A

xakx
V




      5.12.2 

 

Calculus shows [do it! – just differentiate x
2
(1  -  x)] that V has a maximum value of 

A

ka
V

0

3

max
27

8


  for a separation .

3
2 ax    If we express the potential difference in units 

of maxV  and the separation in units of a, equation 5.12.2 becomes  

 

    .
4

)1(27 2
2 xx

V


      5.12.3 

 

In figure V.12 I have plotted the separation as a function of the potential difference. 

 

 



 12 

  

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V/V
max

x
/a

FIGURE V.10

 
As expected, the potential difference is zero when the separation is 0 or 1 (and therefore 

you would expect it to go through a maximum for some intermediate separation). 

 

We see that for maxVV  there are two equilibrium positions.  For example, if V = 0.8, 

show that x = 0.396 305 or 0.876 617.  The question also arises – what happens if you 

apply across the plates a potential difference that is greater than Vmax? 

 

Further insight can be obtained from energy considerations.  The potential energy of the 

system is the work done in moving the upper plate from x = a to x = x while the potential 

difference is V: 

 

   .)(
22

2

2
1

2

0

2

0 xak
x

AV

a

AV






E    5.12.4 

 

You may need to refer to Section 5.15 to be sure that we have got this right.  

 

If we express V in units of Vmax , x in units of a and E  in units of  ,2ka  this becomes 

 

   .)1()/11( 2

2
12

27
4 xxV E     5.12.5 

 

In figure V.13 I have plotted the energy versus separation for three values of potential 

difference: 90% of Vmax , Vmax , and 110% of Vmax.    

 



 13 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

x

P
o
te

n
ti
a
l 
e
n
e
rg

y

FIGURE V.13

V = 0.90

1.00

1.10

      
 

     We see that for V < Vmax, there are two equilibrium positions, of which the lower one 

(smaller x) is unstable, and we see exactly what will happen if the upper plate is 

displaced slightly upwards (larger x) from the unstable equilibrium position or if it is 

displaced slightly downwards (smaller x).  The upper equilibrium position is stable. 

 

If  V > Vmax, there is no equilibrium position, and x goes down to zero – i.e. the plates 

clamp together. 

 

 

5.13   Sharing a Charge Between Two Capacitors 

 

  

 

 

 

 

 

 

 

We have two capacitors.  C2 is initially uncharged.  Initially,C1 bears a charge Q0 and the 

potential difference across its plates is V0, such that 

 

Q0 

C1 

V0 

FIGURE V.14 
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    ,010 VCQ         5.13.1 

 

and the energy of the system is 

 

    .2
012

1
0 VCE       5.13.2 

 

We now close the switches, so that the charge is shared between the two capacitors: 

 

     

  

 

 

 

 

 

 

 

The capacitors C1 and C2 now bear charges Q1 and Q2 such that Q0  =  Q1 + Q2 and 

 

  0

21

1
1 Q

CC

C
Q


              and           .0

21

2
2 Q

CC

C
Q


           5.13.3a,b 

  

The potential difference across the plates of either capacitor is, of course, the same, so we 

can call it V without a subscript, and it is easily seen, by applying Q = CV to either 

capacitor, that  

 

        .0

21

1 V
CC

C
V


      5.13.4 

 

We can now apply 2

2
1 CVE to each capacitor in turn to find the energy stored in each.  

We find for the energies stored in the two capacitors: 

 

  
2

21

2

0

3

1
1

)(2 CC

VC


E       and       .

)(2 2

21

2

0

2

12
2

CC

VCC


E           5.13.5a,b 

 

The total energy stored in the two capacitors is the sum of these, which is 

 

    ,
)(2 21

2

0

2

1

CC

VC


E      5.13.6 

 

which can also be written 
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V 
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    .0

21

1 EE
CC

C


      5.13.7 

 

Surprise, surprise!   The energy stored in the two capacitors is less than the energy that 

was originally stored in C1.  What has happened to the lost energy? 

 

A perfectly reasonable and not incorrect answer is that it has been dissipated as heat in 

the connecting wires as current flowed from one capacitor to the other.  However, it has 

been found in low temperature physics that if you immerse certain metals in liquid 

helium they lose all electrical resistance and they become superconductive.  So, let us 

connect the capacitors with superconducting wires.  Then there is no dissipation of 

energy as heat in the wires – so the question remains: where has the missing energy 

gone? 

 

Well, perhaps the dielectric medium in the capacitors is heated?  Again this seems like a 

perfectly reasonable and probably not entirely incorrect answer.  However, my capacitors 

have a vacuum between the plates, and are connected by superconducting wires, so that 

no heat is generated either in the dielectric or in the wires.  Where has that energy gone? 

 

This will have to remain a mystery for the time being, and a topic for lunchtime 

conversation.  In a later chapter I shall suggest another explanation. 

 

 

 

5.14   Mixed Dielectrics 

 

This section addresses the question:  If there are two or more dielectric media between 

the plates of a capacitor, with different permittivities, are the electric fields in the two 

media different, or are they the same?  The answer depends on 

 

 1.  Whether by “electric field” you mean E or D; 

 

 2.  The disposition of the media between the plates – i.e. whether the two 

dielectrics are in series or in parallel. 

 

Let us first suppose that two media are in series (figure V.16). 
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Our capacitor has two dielectrics in series, the first one of thickness d1 and permittivity 1 

and the second one of thickness d2 and permittivity 2.    As always, the thicknesses of the 

dielectrics are supposed to be small so that the fields within them are uniform. This is 

effectively two capacitors in series, of capacitances ./and/ 2211 dAdA    The total 

capacitance is therefore 

 

    .

2112

21

dd

A
C




      5.14.1 

 

Let us imagine that the potential difference across the plates is V0. Specifically, we’ll 

suppose the potential of the lower plate is zero and the potential of the upper plate is V0.  

The charge Q held by the capacitor (positive on one plate, negative on the other) is just 

given by Q = CV0, and hence the surface charge density  is CV0/A.  Gauss’s law is that 

the total D-flux arising from a charge is equal to the charge, so that in this geometry D = 

, and this is not altered by the nature of the dielectric materials between the plates.  

Thus, in this capacitor, D = CV0/A = Q/A in both media.  Thus D is continuous across the 

boundary. 

 

Then by application of D = E to each of the media, we find that the E-fields in the two 

media are ,)/(and)/( 2211 AQEAQE   the E-field (and hence the potential 

gradient) being larger in the medium with the smaller permittivity. 

 

The potential V at the media boundary is given by ./ 22 EdV    Combining this with our 

expression for E2, and Q  =  CV and equation 5.14.1, we find for the boundary potential: 

 

     

    .
0

2112

21
V

dd

d
V




      5.14.2 

 

 

Let us now suppose that two media are in parallel (figure V.17). 
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This time, we have two dielectrics, each of thickness d, but one has area A1 and 

permittivity 1 while the other has area A2 and permittivity 2.  This is just two capacitors 

in parallel, and the total capacitance is 

 

    .2211

d

A

d

A
C





        5.14.3 

 

The E-field is just the potential gradient, and this is independent of any medium between 

the plates, so that E = V/d. in each of the two dielectrics. After that, we have simply that 

.and 2211 EDED    The charge density on the plates is given by Gauss’s law as  

= D, so that, if 1 < 2, the charge density on the left hand portion of each plate is less 

than on the right hand portion – although the potential is the same throughout each plate. 

(The surface of a metal is always an equipotential surface.)  The two different charge 

densities on each plate is a result of the different polarizations of the two dielectrics – 

something that will be more readily understood a little later in this chapter when we deal 

with media polarization. 

 

We have established that: 

     1.  The component of D perpendicular to a boundary is continuous; 

      2.  The component of E parallel to a boundary is continuous. 

 

In figure V.18 we are looking at the D-field and at the E-field as it crosses a boundary in 

which 1 < 2.  Note that Dy and Ex are the same on either side of the boundary.  This 

results in: 

    .
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      5.14.4 
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5.15   Changing the Distance Between the Plates of a Capacitor 

 

If you gradually increase the distance between the plates of a capacitor (although always 

keeping it sufficiently small so that the field is uniform) does the intensity of the field 

change or does it stay the same?  If the former, does it increase or decrease? 

 

The answers to these questions depends 

 

     1.  on whether, by the field, you are referring to the E-field or the D-field; 

 

     2.  on whether the plates are isolated or if they are connected to the poles of a battery. 

 

 

We shall start by supposing that the plates are isolated. 

 

In this case the charge on the plates is constant, and so is the charge density.  Gauss’s law 

requires that D = , so that D remains constant.  And, since the permittivity hasn’t 

changed, E also remains constant.   

 

The potential difference across the plates is Ed, so, as you increase the plate separation, 

so the potential difference across the plates in increased.   The capacitance decreases 

from A/d1 to A/d2 and the energy stored in the capacitor increases from 

.
2

to
2

2
2

2
1







 AdAd
  This energy derives from the work done in separating the plates. 

 

 

Now let’s suppose that the plates are connected to a battery of EMF V, with air or a 

vacuum between the plates.  At first, the separation is d1.  The magnitudes of E and D are, 

respectively, V/d1 and 0V/d1.  When we have increased the separation to d2, the potential 

difference across the plates has not changed; it is still the EMF V of the battery.  The 

electric field, however, is now only E = V/d2 and D = 0V/d2.  But Gauss’s law still 

dictates that D = , and therefore the charge density, and the total charge on the plates, is 

less than it was before.  It has gone into the battery.  In other words, in doing work by 

separating the plates we have recharged the battery.  The energy stored in the capacitor 

was originally ;
2 1

2

0

d

AV
 it is now only .

2 2

2

0

d

AV
  Thus the energy held in the capacitor has 

been reduced by .
11

21

2

02
1











dd
AV  

 

The charge originally held by the capacitor was .
1

0

d

AV
  After the plate separation has 

been increased to d2 the charge held is .
2

0

d

AV
  The difference, 










21

0

11

dd
AV , is the 
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charge that has gone into the battery.  The energy, or work, required to force this amount 

of charge into the battery against its EMF V is .
11

21

2

0 









dd
AV   Half of this came from 

the loss in energy held by the capacitor (see above). The other half presumably came 

from the mechanical work you did in separating the plates.  Let’s see if we can verify 

this. 

 

When the plate separation is x, the force between the plates is ,
2
1 QE  which is 

.
2

or.
2

2

00

2
1

x

AV

x

V

x

AV 
   The work required to increase x from d1 to d2 is 

,
2

2

1
2

2

0


 d

d x

dxAV
  which is indeed .

11

21

2

02
1











dd
AV   Thus this amount of mechanical 

work, plus an equal amount of energy from the capacitor, has gone into recharging the 

battery.  Expressed otherwise, the work done in separating the plates equals the work 

required to charge the battery minus the decrease in energy stored by the capacitor. 

 

 

 

Perhaps we have invented a battery charger (figure V.19)! 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the plate separation is x, the charge stored in the capacitor is .0

x

AV
Q


   If x is 

increased at a rate x , Q will increase at a rate .
2

0

x

xAV
Q

 
   That is, the capacitor will 

discharge (because Q is negative), and a current 
2

0

x

xAV
I


 will flow counterclockwise 

in the circuit.  (Verify that this expression is dimensionally correct for current.) 

x 

I 

FIGURE V.19 

x  
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5.16   Inserting a Dielectric into a Capacitor 

 

Suppose you start with two plates separated by a vacuum or by air, with a potential 

difference across the plates, and you then insert a dielectric material of permittivity 0  

between the plates.  Does the intensity of the field change or does it stay the same?  If the 

former, does it increase or decrease? 

 

The answer to these questions depends 

     1.  on whether, by the field, you are referring to the E-field or the D-field; 

 

 

     2.  on whether the plates are isolated or if they are connected to the poles of a battery. 

 

 

 

 

 

We shall start by supposing that the plates are isolated.  See figure V.20.   

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Let Q be the charge on the plates, and  the surface charge density.  These are unaltered 

by the introduction of the dielectric.  Gauss’s law provides that D = , so this, too, is 

unaltered by the introduction of the dielectric.  The electric field was, initially, 

./ 01  DE   After introduction of the dielectric, it is a little less, namely ./1  DE  

 

Let us take the potential of the lower plate to be zero.  Before introduction of the 

dielectric, the potential of the upper plate was ./ 01  dV  After introduction of the 

dielectric, it is a little less, namely ./1  dV  

 

Why is the electric field E less after introduction of the dielectric material?  It is because 

the dielectric material becomes polarized.  We saw in Section 3.6 how matter may 

become polarized.  Either molecules with pre-existing dipole moments align themselves 

V1  =  d/0 

FIGURE V.20 



 

0 

  

 Q = A Q = A  

V2  =  d/ 

0 

D =  E2 = D/D = E1 = D/
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with the imposed electric field, or, if they have no permanent dipole moment or if they 

cannot rotate, a dipole moment can be induced in the individual molecules.  In any case, 

the effect of the alignment of all these molecular dipoles is that there is a slight surplus of 

positive charge on the surface of the dielectric material next to the negative plate, and a 

slight surplus of negative charge on the surface of the dielectric material next to the 

positive plate.  This produces an electric field opposite to the direction of the imposed 

field, and thus the total electric field is somewhat reduced. 

 

Before introduction of the dielectric material, the energy stored in the capacitor was 

12
1 QV .  After introduction of the material, it is ,22

1 QV  which is a little bit less.  Thus it 

will require work to remove the material from between the plates.  The empty capacitor 

will tend to suck the material in, just as the charged rod in Chapter 1 attracted an 

uncharged pith ball. 

 

 

Now let us suppose that the plates are connected to a battery.   (Figure V.21) 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

This time the potential difference remains constant, and therefore so does the E-field, 

which is just V/d.  But the D-field increases from 0E to E, and so, therefore, does the 

surface charge density on the plates.  This extra charge comes from the battery. 

 

The capacitance increases from 
d

A

d

A 
to0  and the charge stored on the plates increases 

from .to 2
0

1
d

AV
Q

d

AV
Q





   The energy stored in the capacitor increases from 

.to 22
1

12
1 VQVQ    

 

The energy supplied by the battery = the energy dumped into the capacitor + the energy 

required to suck the dielectric material into the capacitor: 

 

V 

FIGURE V.21 



 

0 

  

V 

0 

D2 = E 
E = V/d D1 = 0E 









E = V/d



 22 

  .)()()( 122
1

122
1

12 VQQVQQVQQ   

 

You would have to do work to remove the material from the capacitor;  half of the work 

you do would be the mechanical work performed in pulling the material out; the other 

half would be used in charging the battery. 

 

In Section 5.15 I invented one type of battery charger.  I am now going to make my 

fortune by inventing another type of battery charger. 

 

 

 

Example 1.    

 

 

 

 

 

 

 

 

 

 

 

 

A capacitor is formed of two square plates, each of dimensions a × a, separation d, 

connected to a battery.  There is a dielectric medium of permittivity  between the plates.  

I pull the dielectric medium out at speed x .  Calculate the current in the circuit as the 

battery is recharged. 

 

Solution. 

 

When I have moved a distance x, the capacitance is  

 

   .
)()( 0

2

0

d

axa

d

ax

d

xaa 






 

 

The charge held by the capacitor is then 

 

   .
)( 0

2

V
d

axa
Q 







 
  

 

If the dielectric is moved out at speed x , the charge held by the capacitor will increase at 

a rate 

 

 x  

x 

a  x 
d 

FIGURE V.22 

V 
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   .
)( 0

d

Vxa
Q

 
  

 

(That’s negative, so Q decreases.)   A current of this magnitude therefore flows clockwise 

around the circuit, into the battery.  You should verify that the expression has the correct 

dimensions for current. 

 

 

 

 

Example 2. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A capacitor consists of two plates, each of area A, separated by a distance x, connected to 

a battery of EMF V.  A cup rests on the lower plate.  The cup is gradually filled with a 

nonconducting liquid of permittivity , the surface rising at a speed x .  Calculate the 

magnitude and direction of the current in the circuit. 

 

It is easy to calculate that, when the liquid has a depth x, the capacitance of the capacitor 

is 

    
xd

A
C

)( 0

0




  

 

and the charge held by the capacitor is then 

 

    .
)( 0

0

xd

AV
Q




  

FIGURE V.23 
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If x is increasing at a rate x , the rate at which Q, the charge on the capacitor, is increasing 

is 

 

    .
])([

)(
2

0

00

xd

xAV
Q






  

 

A current of this magnitude therefore flows in the circuit counterclockwise, draining the 

battery.   This current increases monotonically from zero to .
)(
2

0

0

d

xAV



 
 

 

 

 

 

5.17   Polarization and Susceptibility 

 

When an insulating material is placed in an electric field, it becomes polarized, either by 

rotation of molecules with pre-existing dipole moments or by induction of dipole 

moments in the individual molecules.  Inside the material, D is then greater than 0E.  

Indeed, 

 

    .0 PED       5.17.1 

 

The excess, P, of D over 0E is called the polarization of the medium.  It is dimensionally 

similar to, and expressed in the same units as, D;  that is to say C m
2

.  Another way of 

looking at the polarization of a medium is that it is the dipole moment per unit volume. 

 

In vector form, the relation is 

 

    .0 PED       5.17.2 

 

If the medium is isotropic, all three vectors are parallel.    

 

Some media are more susceptible to becoming polarized in a polarizing field than others, 

and the ratio of P to 0E is called the electric susceptibility e of the medium: 

 

    .0e EP        5.17.3 

 

This implies that P is linearly proportional to E but only if e is independent of E, which 

is by no means always the case, but is good for small polarizations. 

 

When we combine equations 5.17.1 and 5.17.3 with D = E and with ,/ 0r  the 

relative permittivity or dielectric constant, we obtain 
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    .1re        5.17.4 

 

 

 

5.18    Discharging a Capacitor Through a Resistor 

 

     

 

     

 

 

 

 

 

 

 

What you have to be sure of in this section and the following section is to get the signs 

right.  For example, if the charge held in the capacitor at some time is Q, then the symbol 

,/or, dtdQQ  means the rate of increase of Q with respect to time.  If the capacitor is 

discharging, Q  is negative.  Expressed otherwise, the symbol to be used for the rate at 

which a capacitor is losing charge is Q . 

 

In figure V.24 a capacitor is discharging through a resistor, and the current as drawn is 

given by .QI    The potential difference across the plates of the capacitor is Q/C, and 

the potential difference across the resistor is .RQIR   

 

Thus:                                   .0 RQ
C

Q
IR

C

Q      5.18.1 

 

On separating the variables (Q and t) and integrating we obtain 

 

 

    ,
1

00
 

tQ

Q
dt

RCQ

dQ
    5.18.2 

 

where Q0 is the charge in the capacitor at t  =  0. 

 

Hence    .)/(

0

RCteQQ       5.18.3 

 

Here RC is the time constant.  (Verify that it has the dimensions of time.)  It is the time 

for the charge to be reduced to 1/e  = 36.8% of the initial charge.  The half life of the 

charge is .6931.02ln RCRC     

 

FIGURE V.24 

R 

+ 

QI   

C 
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5.19    Charging a Capacitor Through a Resistor 

   

 

 

 

 

 

 

 

 

 

 

 

This time, the charge on the capacitor is increasing, so the current, as drawn, is .Q  

Thus 

   .0
C

Q
RQE      5.19.1 

 

Whence:   


tQ

dt
RCQC

dQ

00
.

1

E
    5.19.2 

 

 

[Note:  Don’t be tempted to write this as  


tQ

dt
RCCQ

dQ

00
.

1

E
  Remember that, 

at any finite t, Q is less than its asymptotic value CE , and you want to keep the 

denominator of the left hand integral positive.] 

 

Upon integrating, we obtain 

 

     .1 )/(RCteCQ  E     5.19.3 

 

Thus the charge on the capacitor asymptotically approaches its final value CE , reaching 

63%  (1  e
1

) of the final value in time RC and half of the final value in time RC ln 2  =  

0.6931 RC. 

 

The potential difference across the plates increases at the same rate.  Potential difference 

cannot change instantaneously in any circuit containing capacitance. 

 

How does the current change with time?  This is found by differentiating equation 5.19.3 

with respect to time, to give )/(RCte
R

I 
E

.    This suggests that the current grows 

instantaneously from zero to R/E  as soon as the switch is closed, and then it decays 

QI   

FIGURE V.25 
C 

E 

+ 
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exponentially, with time constant RC, to zero.  Is this really possible?  It is possible in 

principle if the inductance (see Chapter 12) of the circuit is zero.  But the inductance of 

any closed circuit cannot be exactly zero, and the circuit, as drawn without any 

inductance whatever, is not achievable in any real circuit, and so, in a real circuit, there 

will not be an instantaneous change of current.   Chapter 10 Section 10.15 will deal with 

the growth of current in a circuit that contains both capacitance and inductance as well as 

resistance. 

 

Energy considerations 

 

When the capacitor is fully charged, the current has dropped to zero, the potential 

difference across its plates is E  (the EMF of the battery), and the energy stored in the 

capacitor (see Section 5.10) is EE QC
2
12

2
1  .  But the energy lost by the battery is EQ .  

Let us hope that the remaining EQ
2
1  is heat generated in and dissipated by the resistor. 

The rate at which heat is generated by current in a resistor (see Chapter 4 Section 4.6) is 

RI 2 .  In this case, according to the previous paragraph, the current at time t is 

)/(RCte
R

I 
E

, so the total heat generated in the resistor is 2
2
1

0

)/(2
2

E
E

Ce
R

RCt 


 , 

so all is well.  The energy lost by the battery is shared equally between R and C. 

 

 

 

Neon lamp 
 

Here’s a way of making a neon lamp flash periodically.   

 

In figure V.
2
125 (sorry about the fraction – I slipped the figure in as an afterthought!), the 

thing that looks something like a happy face on the right is a discharge tube; the dot 

inside it indicates that it’s not a complete vacuum inside, but it has a little bit of gas 

inside. 

 

 

   

 

    

 

 

                                               

 

 

It will discharge when the potential difference across the electrodes is higher than a 

certain threshold.  When an electric field is applied across the tube, electrons and positive 

ions accelerate, but are soon slowed by collisions.  But, if the field is sufficiently high, 

the electrons and ions will have enough energy on collision to ionize the atoms they 

FIGURE V.
2
125  
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collide with, so a cascading discharge will occur.  The potential difference rises 

exponentially on an RC time-scale until it reaches the threshold value, and the neon tube 

suddenly discharges.  Then it starts all over again. 

 

   

Problem  

 

Here is a problem that will give practice in charging a capacitor, applying Kirchhoff’s 

rules, and solving differential equations. 

 

 

 

 

 

 

 

 

 

 

 

In the above circuit, while the switch is open, )2/(21 RII E  and 03 I .  This will 

also be the situation long after the switch is closed and the capacitor is charged.  But we 

want to investigate what happens in the brief moments while the capacitor is being 

charged.  And what will be the final charge in the capacitor? 

 

We apply Kirchhoff’s rules: 

 

    RIRI 21 E     5.19.4 

 

    0/ 23  RICQRI    5.19.5 

             

         321 III  ,     5.19.6 

 

Here Q is the charge on the capacitor at some time. 

 

Eliminate I1  and I2 to get a single equation in I3. 

 

    RI
C

Q
33

2
E .    5.19.7 

 

But 
dt

dQ
I 3  , so we have differential equation in Q and the time t. 

 

    
R

Q
RCdt

dQ

33

2 E
 .            5.19.8 

C E 

R R 

R 

I1 I3 

I2 
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This is of the form bay
dx

dy
 , and those experienced with differential equations will 

have no difficulty in arriving at the solution 

    RC

t

AeCQ 3

2

2
1



 E    5.19.9 

With the initial condition that Q  =  0 when t =  0, this becomes    

 

    
















RC

t

eCQ 3

2

2
1 1E .   5.19.10 

 

Thus the final charge in the capacitor is CE
2
1 . 

   

The current I3 is found by differentiating equation 5.19.10 with respect to time, and the 

other currents are found from Kirchhoff’s rules (equations 5.19.4-6).  I make them: 

 

    
















RC

t

e
R

I 3

2

3
1

1 1
2

E
   5.19.11 

 

    
















RC

t

e
R

I 3

2

3
1

2 1
2

E
   5.19.12 

    .
3

3

2

3
RC

t

e
R

I



E

    5.19.13 

 

Thus I1 goes from initially 
R3

2E
 to finally  

R2

E
. 

 

        I2 goes from initially 
R3

E
 to finally  

R2

E
. 

 

       I3 goes from initially 
R3

E
 to finally  0. 

Before the switch was opened, these currents were 
R2

E
 ,  

R2

E
 and zero respectively.  

Readers might wonder whether the currents can change instantaneously as soon as the 

switch is closed.  The answer is yes, provided that the circuit has no inductance (see 

Chapter 10, especially Sections 10.12-15, which deal with the growth of current in a 

circuit that has inductance).  In practice no circuit can be entirely free from inductance; 

apart from the inductance of any circuit components, any circuit that forms a closed loop 

(as all circuits must) must have a small inductance.  The inductance may be very small, 
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which means that the change of current at the instant when the switch is closed is very 

rapid. It is not, however, instantaneous.   

 

Here are graphs of the currents and of Q as a function of time.  Currents are expressed in 

units of E /R, Q in units of E C, and time in units of RC
2
3 . 
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0
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I
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I
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I
3

Q

 
 

   There is a similar problem involving an inductor in Chapter 10, Section 10.12. 

 

 

Integrating and differentiating circuits. 

 

   We look now at what happens if we connect a resistor and a capacitor in series across a 

voltage source that is varying with time, and we shall show that, provided some 

conditions are satisfied, the potential difference across the capacitor is the time integral of 

the input voltage, while the potential difference across the resistor is the time derivative 

of the input voltage. 

 

   We have seen that, if we connect a resistor and a capacitor in series with a battery of 

EMF E, the charge in the capacitor will increase according to ,1
















RC

t

eCQ E  

asymptotically approaching  CQ E , and reaching 632.01 1  e  of this value in time 
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RC.   Note that, when RCt  , the current will be large, and the charge in the capacitor 

will be small.  Most of the potential drop in the circuit will be across the resistor, and 

relatively little across the capacitor.  After a long time, however, the current will be low, 

and the charge will be high, so that most of the potential drop will be across the capacitor, 

and relatively little across the resistor.  The potential drops across R and C will be equal 

at a time .693.02ln RCRCt   

 

   Suppose that, instead of connecting R and C to a battery of constant EMF, we connect it 

to a source whose voltage varies with time, )(tV .  How will the charge in C vary with 

time? 

 

 

 

  

 

 

 

 The relevant equation is CQIRV / , in which I, Q and V are all functions of time. 

Since QI  , the differential equation showing how Q varies with time is 

 

    
R

V
Q

RCdt

dQ


1
     5.19.14 

The integration of this equation is made easy if we multiply both sides by RC

t

e .   (Those 

who are experienced in solving differential equations will readily think of this step.  

Those who are less experienced might not immediately think of it, but will soon see that 

it is a useful step.)  We then obtain 

 

RC

t

RC

t

RC

t

RC

t

e
R

V
Qe

dt

d
Qe

RCdt

dQ
e 
















1
   5.19.15 

 

Thus the answer to our question is 

 

.dtVe
R

e
Q RC

tRC

t




                5.19.16 

 

  If V = E  and is independent of time, this reduces to the familiar .1
















RC

t

eCQ E  

The potential difference across C increases, of course, as 

    .dtVe
RC

e
V RC

tRC

t

C 


            5.19.17 

)(tVV 

 

CV  

R 

C 
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   While t is very much shorter than the time constant RC, by which I mean short enough 

that RC

t

e  is very close to 1, this becomes 

 

    .
1

Vdt
RC

VC                 5.19.18 

 

   That is why this circuit is called an integrating circuit.  The output voltage across C is 

)/(1 RC  times the time integral of the input voltage V.  This is also true if the input 

voltage is a periodic function of time with a period that is very much shorter than the time 

constant.   

   By way of example, suppose that 2atV  .   If we put this in the right hand side of 

equation 5.19.17 and integrate, with initial condition VC   =   0   when t  = 0,  (do it!), we 

obtain 

                         .22
2

22

2
22

















RC

t

C e
RC

t

CR

t
CaRV               5.19.19 

For example, suppose the input voltage varies as 25tV   volts, where t is in seconds.  If 

R =  500   and C  =  400 F,  what will be the potential differnece across the capacitor 

after 0.3 s?  We immediately see that RC = 0.2 s and )/(RCt  =  1.5.    Substitute SI 

numbers in equation 5.19.19 to obtain VC  = 0.161 V. 

     If I write 
22CaR

V
y C    and   

RC

t
x   equation 5.19.19 in dimensionless form 

becomes 

   .2222 xexxy                 5.19.20 

 

If you Taylor expand this as far as x
3
 (do it!), you get 3

3
1 xy  , which is just what you 

would get by using equation 5.19.18, the equation which is an approximation for a time 

that is short compared with RC. The approximation is good as long as 

4










RC

t
is 

negligible. I show equation 5.19.20 and 3

3
1 xy   in the graph below, in which VC  is in 

units of 22CaR  and T is in units of RC. 
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Equation 5.19.17  (or, for short time intervals, equation 5.19.18) gives us the voltage 

across C as a function of time.  What about the voltage across R?  That is evidently 

 

   .dtVe
RC

e
VV RC

tRC

t

R 


                                                 5.19.21        

Differentiate with respect to time: 

RC

V

dt

dV
VV

RCdt

dV

dtVe
RC

e
Vee

RCdt

dV

dt

dV

R
C

RC

tRC

t

RC

t

RC

t

R



















 




)(
1

1

         5.19.22         

                      

If the time constant is small so that 
RC

V

dt

dV RR  , this becomes 

dR

dV
RCVR  ,     5.20.23 
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so that the voltage across R is RC times the time derivative of the input voltage V.  Thus 

we have a differentiating circuit. 

Note that, in the integrating circuit, the circuit must have a large time constant (large R 

and C) and time variations in V are rapid compared with RC.  The output voltage across 

C is then .
1

Vdt
RC

   In the differentiating circuit, the circuit must have a small time 

constant, and time variations in V are slow compared with RC.  The output voltage across 

R is then 
dR

dV
. 

 

 

5.20   Real Capacitors 

 

Real capacitors can vary from huge metal plates suspended in oil to the tiny cylindrical 

components seen inside a radio.  A great deal of information about them is available on 

the Web and from manufacturers’ catalogues, and I only make the briefest remarks here. 

  

A typical inexpensive capacitor seen inside a radio is nothing much more than two strips 

of metal foil separated by a strip of plastic or even paper, rolled up into a cylinder much 

like a Swiss roll.  Thus the separation of the “plates” is small, and the area of the plates is 

as much as can be conveniently rolled into a tiny radio component.   

 

In most applications it doesn’t matter which way round the capacitor is connected.  

However, with some capacitors it is intended that the outermost of the two metal strips be 

grounded (“earthed” in UK terminology), and the inner one is shielded by the outer one 

from stray electric fields.  In that case the symbol used to represent the capacitor is 

 

 

 

The curved line is the outer strip, and is the one that is intended to be grounded.  It should 

be noted, however, that not everyone appears to be aware of this convention or adheres to 

it, and some people will use this symbol to denote any capacitor.  Therefore care must be 

taken in reading the literature to be sure that you know what the writer intended, and, if 

you are describing a circuit yourself, you must make very clear the intended meaning of 

your symbols.  

 

There is a type of capacitor known as an electrolytic capacitor.  The two “plates” are 

strips of aluminium foil separated by a conducting paste, or electrolyte.  One of the foils 

is covered by an extremely thin layer of aluminium oxide, which has been electrolytically 

deposited, and it is this layer than forms the dielectric medium, not the paste that 

separates the two foils.   Because of the extreme thinness of the oxide layer, the 

capacitance is relatively high, although it may not be possible to control the actual 

thickness with great precision and consequently the actual value of the capacitance may 

not be known with great precision.  It is very important that an electrolytic capacitor be 

corrected the right way round in a circuit, otherwise electrolysis will start to remove the 
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oxide layer from one foil and deposit it on the other, thus greatly changing the 

capacitance.  Also, when this happens, a current may pass through the electrolyte and 

heat it up so much that the capacitor may burst open with consequent danger to the eyes.  

The symbol used to indicate an electrolytic capacitor is: 

 

 

 

The side indicated with the plus sign (which is often omitted from the symbol) is to be 

connected to the positive side of the circuit.    

 

When you tune your radio, you will usually find that, as you turn the knob that changes 

the wavelength that you want to receive, you are changing the capacitance of a variable 

air-spaced capacitor just behind the knob.  A variable capacitor can be represented by the 

symbol 

   

 

 

Such a capacitor often consists of two sets of interleaved partiallyoverlapping plates, one 

set of which can be rotated with respect to the other, thus changing the overlap area and 

hence the capacitance. 

 

Thinking about this suggests to me a couple of small problems for you to amuse yourself 

with. 

 

Problem 1.    

 

 

 

 

 

 

 

A capacitor (figure V.26) is made from two sets of four plates.  The area of each plate is 

A and the spacing between the plates in each set is 2d.  The two sets of plates are 

interleaved, so that the distance between the plates of one set and the plates of the other is 

d.  What is the capacitance of the system? 

 

 

Problem 2 

 

 

 

 

 

 

 

+ 

FIGURE V.26 
2d 

FIGURE V.27 2d 
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This is just like Problem 1, except that one set has four plates and the other has three.  

What is the capacitance now?    

 

 

Solutions.    The answer to the first problem is 70A/d and the answer to the second 

problem is 60A/d – but it isn’t good enough just to assert that this is the case.  We must 

give some reasons. 

 

Let us suppose that the potential of the left-hand (blue) plates is zero and the potential of 

the right-hand (blue) plates is V.  The electric field in each space is V/d and D = 0V/d.  

The surface charge density on each plate, by Gauss’s theorem, is therefore 20V/d except 

for the two end plates, for which the charge density is just 0V/d. The total charge held in 

the capacitor of Problem 1 is therefore 0AV/d  + 3 × 20AV/d =  70AV/d, and the 

capacitance is therefore 70A/d.  For Problem 2, the blue set has two end-plates and two 

middle-plates, so the charge held is 2 × 0AV/d  +  2  ×  20AV/d  =  60AV/d.  The red set 

has three middle- plates and no end-plates, so the charge held is 3 × 20AV/d =  60AV/d.  

The capacitance is therefore 60A/d.   

 

 

  

5.21 More on E, D, P, etc. 

 

I’ll review a few things that we have already covered before going on. 

 

The electric field E between the plates of a plane parallel capacitor is equal to the 

potential gradient – i.e. the potential difference between the plates divided by the distance 

between them. 

 

The electric field D between the plates of a plane parallel capacitor is equal to the surface 

charge density on the plates. 

 

Suppose at first there is nothing between the plates.  If you now thrust an isotropic* 

dielectric material of relative permittivity r between the plates, what happens?  Answer:  

If the plates are isolated D remains the same while E (and hence the potential difference 

across the plates) is reduced by a factor r.   If on the other hand the plates are connected 

to a battery, the potential difference and hence E remains the same while D (and hence 

the charge density on the plates) increases by a factor r. 

 

*You will have noticed the word isotropic here.  Refer to Section 1.7 for a brief mention of an anisotropic 

medium, and the concept of permittivity as a tensor quantity.  I’m not concerned with this aspect here. 

 

In either case, the block of dielectric material becomes polarized.  It develops a charge 

density on the surfaces that adjoin the plates.  The block of material develops a dipole 

moment, and the dipole moment divided by the volume of the material – i.e. the dipole 

moment per unit volume – is the polarization P of the material.   P is also equal to 
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ED 0   and, of course, to EE 0 .  The ratio of the resulting polarization P to the 

polarizing field 0E is called the electric susceptibility of the medium.  It will be worth 

spending a few moments convincing yourself from these definitions and concepts that  

)1(0    and 1r  , where r  is the dimensionless relative permittivity (or 

dielectric constant) 0/  . 

 

What is happening physically inside the medium when it becomes polarized?  One 

possibility is that the individual molecules, if they are asymmetric molecules, may 

already possess a permanent dipole moment.   The molecule carbon dioxide, which, in its 

ground state, is linear and symmetric, O=C=O, does not have a permanent dipole 

moment.  Symmetric molecules such as CH4, and single atoms such as He, do not have a 

permanent dipole moment.   The water molecule has some elements of symmetry, but it 

is not linear, and it does have a permanent dipole moment, of about 6 10
30

 C m, 

directed along the bisector of the HOH angle and away from the O atom.   If the 

molecules have a permanent dipole moment and are free to rotate (as, for example, in a 

gas) they will tend to rotate in the direction of the applied field.  (I’ll discuss that phrase 

“tend to” in a moment.)   Thus the material becomes polarized. 

 

A molecule such as CH4 is symmetric and has no permanent dipole moment, but, if it is 

placed in an external electric field, the molecule may become distorted from its perfect 

tetrahedral shape with neat 109º angles, because each pair of CH atoms has a dipole 

moment.  Thus the molecule acquires an induced dipole moment, and the material as a 

whole becomes polarized.  The ratio of the induced dipole moment p to the polarizing 

field E polarizability  of the molecule.   Review Section 3.6 for more on this. 

 

How about a single atom, such as Kr?  Even that can acquire a dipole moment. Although 

there are no bonds to bend, under the influence of an electric field a preponderance of 

electrons will migrate to one side of the atom, and so the atom acquires a dipole moment.  

The same phenomenon applies, of course, to a molecule such as CH4 in addition to the 

bond bending already mentioned. 

 

Let us consider the situation of a dielectric material in which the molecules have a 

permanent dipole moment and are free (as in a gas, for example) to rotate.  We’ll suppose 

that, at least in a weak polarizing field, the permanent dipole moment is significantly 

larger than any induced dipole moment, so we’ll neglect the latter.  We have said that, 

under the influence of a polarizing field, the permanent dipole will tend to align 

themselves with the field.  But they also have to contend with the constant jostling and 

collisions between molecules, which knock their dipole moments haywire, so they can’t 

immediately all align exactly with the field.  We might imagine that the material may 

become fairly strongly polarized if the temperature is fairly low, but only relatively 

weakly polarized at higher temperatures.  Dare we even hope that we might be able to 

predict the variation of polarization P with temperature T?   Let’s have a go! 

 

We recall (Section 3.4) that the potential energy U of a dipole, when it makes an angle  

with the electric field, is .cos Ep  pEU   The energy of a dipole whose 
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direction makes an angle of between   and  d  with the field will be between U and 

dUU  , where  dpEdU sin .  What happens next requires familiarity with 

Boltzmann’s equation for distribution of energies in a statistical mechanics.  See for 

example my Stellar Atmospheres notes, Chapter 8, Section 8.4.   The fraction of 

molecules having energies between U  and dUU  will be, following Boltzmann’s 

equation,  
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(Caution:  Remember that here I’m using U for potential energy, and E for electric field.)   

That is, the fraction of molecules making angles of between   and  d  with the field 
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The component in the direction of E of the dipole moment of this fraction of the 

molecules is  
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so the component in the direction of E of the dipole moment all of the molecules is 
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and this expression represents the induced dipole moment in the direction of the field of 

the entire sample, which I’ll call ps. The polarization of the sample would be this divided 

by its volume.     

 

Let              coscos a
kT

pE
x .    5.21.5 

 

Then the expression for the dipole moment of the entire sample becomes (some care is 

needed): 
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The expression in parentheses is called the Langevin function, and it was first derived in 

connection with the theory of paramagnetism.   If your calculator or computer supports 

the hyperbolic coth function, it is most easily calculated as coth a    1/a.  If it does not 

support coth, calculate it as 
ab

b 1

1

1





, where aeb 2 .   In any case it is a rather 

interesting, even challenging,  function.  Let us call the expression in parentheses f(a).  

What would the function look like it you were to plot f(a) versus a?  The derivative with 

respect to a is .
)1(

41
22 b

b

a 
   It is easy to see that, as a , the function approaches 1 

and its derivative, or slope, approaches zero.   But what are the function and its derivative 

(slope) at a = 0?  You may find that a bit of a challenge.  The answer is that, as 0a , 

the function approaches zero and its derivative approaches 1/3.  (In fact, for small a, the 

Langevin function is approximately 
)1(3 a

a


, and for very small a, it is a

3
1 .)  Thus, for 

small a (i.e. hot temperatures) ps approaches 
kT

pE
p

3
  and no higher.  The Langevin 

function looks like this: 
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It may be more interesting to see directly how the sample dipole moment varies with 

temperature.  If we express the sample dipole moment ps in units of the molecular dipole 

moment p, and the temperature in units of pE/k, then equation 5.22.6 becomes 
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and that looks like this: 
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FIGURE V.29

 
The contribution to the polarization of a sample from the other two mechanisms – namely 

bond bending, and the pushing of electrons to one side, is independent of temperature.  

Thus, if we find that the polarization is temperature dependent, this tells us of the 

existence of a permanent dipole moment, as, for example, in methyl chloride CH3Cl and 

H2O.  Indeed the temperature dependence of the polarization is part of the evidence that 

tells us that the water molecule is nonlinear.  For small a (recall that 
kT

pE
a  ), the 

polarization of the material is 
kT

pE

3
 , and so a graph of the polarization versus 1/T will be 

a straight line from which one can determine the dipole moent of the molecule – the 

greater the slope, the greater the dipole moment. One the other hand, if the polarization is 
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temperature-independent, then the molecule is symmetric, such as methane CH4 and 

OCO.  Indeed the independence of the polarization on temperature is part of the evidence 

that tells us that CO2 is a linear molecule. 

 

 

5.22 Dielectric material in a alternating electric field. 

 

We have seen that, when we put a dielectric material in an electric field, it becomes 

polarized, and the D  field is now E instead of merely E.   But how long does it take to 

become polarized?  Does it happen instantaneously?  In practice there is an enormous 

range in relaxation times.  (We may define a relaxation time as the time taken for the 

material to reach a certain fraction – such as, perhaps 631 1  e  percent, or whatever 

fraction may be convenient in a particular context – of its final polarization.)   The 

relaxation time may be practically instantaneous, or it may be many hours. 

 

As a consequence of the finite relaxation time, if we put a dielectric material in 

oscillating electric field tEE  cosˆ  (e.g. if light passes through a piece of glass), there 

will be a phase lag of D behind E.  D will vary as  )cos(ˆ  tDD .   Stated another 

way, if the E-field is tieEE  ˆ , the D-field will be .ˆ )(  tieDD   Then  

).sin(cos
ˆ

ˆ
  ie

E

D

E

D i This can be written 

 

           ,*ED       5.22.1 

 

where "'*  i   and  cos'    and .sin"   

 

The complex permittivity is just a way of expressing the phase difference between D  and 

E.  The magnitude, or modulus, of *  is , the ordinary permittivity in a static field. 

 

Let us imagine that we have a dielectric material between the plates of a capacitor, and 

that an alternating potential difference is being applied across the plates.  At some instant 

the charge density on the plates (which is equal to the D-field) is changing at a rate  , 

which is also equal to the rate of change D  of the D-field), and the current in the circuit 

is DA  , where A is the area of each plate.  The potential difference across the plates, on 

the other hand, is Ed, where d is the distance between the plates.  The instantaneous rate 

of dissipation of energy in the material is DAdE  , or, let’s say, the instantaneous rate of 

dissipation of energy per unit volume of the material is DE  .   

 

Suppose tEE  cosˆ  and that )cos(ˆ  tDD  so that  

 

).sincoscos(sinˆ)sin(ˆ  ttDtDD  
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The dissipation of energy, in unit volume, in a complete cycle (or period 2/) is the 

integral, with respect to time, of DE   from 0 to 2/.  That is,    

 

.)sincoscos(sincosˆˆ /2

0
dttttDE 


 

 

The first integral is zero, so the dissipation of energy per unit volume per cycle is 

 

.sinˆˆcossinˆˆ /2

0

2  


DEdttDE  

 

Since the energy loss per cycle is proportional to sin , sin  is called the loss factor.  

(Sometimes the loss factor is given as tan , although this is an approximation only for 

small loss angles.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


