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CHAPTER 4 

BATTERIES, RESISTORS AND OHM’S LAW 

 

 

4.1  Introduction 

 

An electric cell consists of two different metals, or carbon and a metal, called the poles, 

immersed or dipped into a liquid or some sort of a wet, conducting paste, known as the 

electrolyte, and, because of some chemical reaction between the two poles and the 

electrolyte, there exists a small potential difference (typically of the order of one or two 

volts) between the poles.  This potential difference is much smaller than the hundreds or 

thousands of volts that may be obtained in typical laboratory experiments in 

electrostatics, and the electric field between the poles is also correspondingly small.   

 

Definition.  The potential difference across the poles of a cell when no current is being 

taken from it is called the electromotive force (EMF) of the cell.   

 

The circuit symbol for a cell is drawn thus: 

 

 

    

The longer, thin line represents the positive pole and the shorter, thick line represents the 

negative pole. 

 

Several cells connected together form a battery of cells.  Thus in principle a single cell 

should strictly be called just that – a cell – and the word battery should be restricted to a 

battery of several cells.  However, in practice, most people use the word battery to mean 

either literally a battery of several cells, or a single cell. 

 

I shall not discuss in this chapter the detailed chemistry of why there exists such a 

potential difference, nor shall I discuss in detail the chemical processes that take place 

inside the several different varieties of cell.  I shall just mention that in the cheaper types 

of flashlight battery (cell), the negative pole, made of zinc, is the outer casing of the cell, 

while the positive pole is a central carbon rod. The rather dirty mess that is the electrolyte 

is a mixture that is probably known only to the manufacturer, though it probably includes 

manganese oxide and ammonium chloride and perhaps such goo as flour or glue and 

goodness knows what else. Other types have a positive pole of nickelic hydroxide and a 

negative pole of cadmium metal in a potassium hydroxide electrolyte.  A 12-volt car 

battery is typically a battery of 6 cells in series, in which the positive poles are lead oxide 

PbO2, the negative poles are metallic lead and the electrolyte is sulphuric acid.   In some 

batteries, after they are exhausted, the poles are irreversibly damaged and the battery has 

to be discarded.  In others, such as the nickel-cadmium or lead-acid cells, the chemical 

reaction is reversible, and so the cells can be recharged.  I have heard the word 

“accumulator” used for a rechargeable battery, particularly the lead-acid car battery, but I 

don’t know how general that usage is. 
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Obviously the purpose of a battery is to extract a current from it.  An electrolytic cell is 

quite the opposite.  In an electrolytic cell, an electric current is forced into it from outside.  

This may be done in a laboratory, for example, to study the flow of electricity through an 

electrolyte, or in industrial processes such as electroplating.  In an electrolytic cell, the 

current is forced into the cell by two electrodes, one of which (the anode) is maintained 

at a higher potential than the other (the cathode).  The electrolyte contains positive ions 

(cations) and negative ions (anions), which can flow through the electrolyte.  Naturally, 

the positive ions (cations) flow towards the negative electrode (the cathode) and the 

negative ions (the anions) flow towards the positive electrode (the anode). 

 

The direction of flow of electricity in an electrolytic cell is the opposite from the flow 

when a battery is being used to power an external circuit, and the roles of the two poles or 

electrodes are reversed.  Thus some writers will refer to the positive pole of a battery as 

its “cathode”.   It is not surprising therefore, that many a student (and, one might even 

guess, many a professor and textbook writer) has become confused over the words 

cathode and anode.  The situation is not eased by referring to negatively charged 

electrons in a gaseous discharge tube as “cathode rays”. 

 

My recommendation would be:  When referring to an electrolytic cell, use the word 

“electrodes”; when referring to a battery, use the word “poles”.  Avoid the use of the 

prefixes “cat” and “an” altogether.   Thus, refer to the positive and negative electrodes of 

an electrolytic cell, the positive and negative poles of a battery, and the positive and 

negative ions of an electrolyte.  In that way your meaning will always be clear and 

unambiguous to yourself and to your audience or your readers. 

 

 

4.2   Resistance and Ohm’s Law 

 

When a potential difference is maintained across the electrodes in an electrolytic cell, a 

current flows through the electrolyte.  This current is carried by positive ions moving 

from the positive electrode towards the negative electrode and also, simultaneously, by 

negative ions moving from the negative electrode towards the positive electrode.  The 

conventional direction of the flow of electricity is the direction in which positive charges 

are moving.  That is to say, electricity flows from the positive electrode towards the 

negative electrode.  The positive ions, then, are moving in the same direction as the 

conventional direction of flow of electricity, and the negative ions are moving in the 

opposite direction. 

 

When current flows in a metal, the current is carried exclusively by means of negatively 

charged electrons, and therefore the current is carried exclusively by means of particles 

that are moving in the opposite direction to the conventional flow of electricity.  Thus 

“electricity” flows from a point of high potential to a point of lower potential; electrons 

move from a point of low potential to a point of higher potential. 
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When a potential difference V is applied across a resistor, the ratio of the potential 

difference across the resistor to the current I that flows through it is called the resistance, 

R, of the resistor.  Thus 

 

     .IRV       4.2.1 

 

This equation, which defines resistance, appears at first glance to say that the current 

through a resistor is proportional to the potential difference across it, and this is Ohm’s 

Law.   Equation 4.2.1, however, implies a simple proportionality between V and I only if 

R is constant and independent of I or of V.  In practice, when a current flows through a 

resistor, the resistor becomes hot, and its resistance increases – and then V and I are no 

longer linearly proportional to one another.  Thus one would have to state Ohm’s Law in 

the form that the current through a resistor is proportional to the potential difference 

across it, provided that the temperature is held constant.  Even so, there are some 

substances (and various electronic devices) in which the resistance is not independent of 

the applied potential difference even at constant temperature.  Thus it is better to regard 

equation 4.2.1 as a definition of resistance rather than as a fundamental law, while also 

accepting that it is a good description of the behaviour of most real substances under a 

wide variety of conditions as long as the temperature is held constant. 

 

 

Definitions.  If a current of one amp flows through a resistor when there is a potential 

difference of one volt across it, the resistance is one ohm ().  (Clear though this 

definition may appear, however, recall from chapter 1 that we have not yet defined 

exactly what we mean by an amp,  nor a volt, so suddenly the meaning of “ohm” 

becomes a good deal less clear!  I do promise a definition of “amp” in a later chapter – 

but in the meantime I crave your patience.) 

 

The dimensions of resistance are .QTML
QT

QTML 212

1

122






  

 

The reciprocal of resistance is conductance, G.    Thus I  =  GV.  It is common informal 

practice to express conductance in “mhos”, a “mho” being an ohm
1

.  The official SI unit 

of conductance, however, is the siemens (S), which is the same thing as a “mho”, namely 

one A V
1

. 

 

The resistance of a resistor is proportional to its length l and inversely proportional to its 

cross-sectional area A: 

 

    .
A

l
R


       4.2.2 

 

The constant of proportionality is called the resistivity of the material of which the 

resistor is made.  Its dimensions are ML
3
T
1

Q
2

, and its SI unit is ohm metre, or  m. 
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The reciprocal of resistivity is the conductivity, .  Its dimensions are M
1

L
3

TQ
2
, and its 

SI unit is siemens per metre, S m
1

. 

 
For those who enjoy collecting obscure units, there is an amusing unit I once came across, namely the unit 

of surface resistivity.   One is concerned with the resistance of a thin sheet of conducting material, such as, 

for example, a thin metallic film deposited on glass.  The resistance of some rectangular area of this is 

proportional to the length l of the rectangle and inversely proportional to its width w: 

 

    .
w

l
R


  

 

The resistance, then, depends on the ratio l/w – i.e. on the shape of the rectangle, rather than on its size.  

Thus the resistance of a 2 mm  3 mm rectangle is the same as that of a 2 m  3 m rectangle, but quite 

different from that of a 3 mm  2 mm rectangle.  The surface resistivity is defined as the resistance of a 

rectangle of unit length and unit width (i.e. a square) – and it doesn’t matter what the size of the square.  

Thus the units of surface resistivity are ohms per square.   (End of sentence!) 

 

 

As far as their resistivities are concerned, it is found that substances may be categorized 

as metals, nonconductors (insulators), and semiconductors.   Metals have rather low 

resistivities, of the order of 10
8

   m.  For example: 

 

   Silver:       1.6    10
8

   m 

   Copper:     1.7    10
8

   

   Aluminium:  2.8    10
8

   

   Tungsten:  5.5    10
8

   

   Iron:  10      10
8

   

 

 

Nonconductors have resistivities typically of order 10
14

 to 10
16

 m or more.  That is, for 

most practical purposes and conditions they don’t conduct any easily measurable 

electricity at all. 

 

Semiconductors have intermediate resistivities, such as 

 

   Carbon:          1500    10
8

   m 

   Germanium:      4.5    10
1

   

   Silicon               6.4    10


   

 

There is another way, besides equation 4.2.1, that is commonly used to express Ohm’s 

law.  Refer to figure IV.1. 

  

 

 

 

 

 
FIGURE IV.1 

A 

V 


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We have a metal rod of length l, cross-sectional area A, electrical conductivity , and so 

its resistance is l/(A).  We clamp it between two points which have a potential difference 

of V between them, and consequently the magnitude of the electric field in the metal is E 

= V/l.  Equation 4.2.1 (Ohm’s law) therefore becomes .)/( AlIlE   Now introduce 

AIJ /  as the current density  (amps per square metre).  Them Ohm’s law becomes 

EJ  .  This is usually written in vector form, since current and field are both vectors, 

so that Ohm’s law is written 

 

     .EJ       4.2.3 

   
   In an anisotropic material, such as a crystal, the conductivity may be different in different directions.  In 

such a case the current density vector J and the electric field vector E may be in different directions, and in 

that case the conductivity is a tensor quantity, not a scalar.
 

 

4.3    Resistance and Temperature 

 

It is found that the resistivities of metals generally increase with increasing temperature, 

while the resistivities of semiconductors generally decrease with increasing temperature. 

 

It may be worth thinking a little about how electrons in a metal or semiconductor conduct 

electricity.  In a solid metal, most of the electrons in an atom are used to form covalent 

bonds between adjacent atoms and hence to hold the solid together.  But about one 

electron per atom is not tied up in this way, and these “conduction electrons” are more or 

less free to move around inside the metal much like the molecules in a gas.  We can 

estimate roughly the speed at which the electrons are moving.  Thus we recall the formula 

mkT /3  for the root-mean-square speed of molecules in a gas, and maybe we can apply 

that to electrons in a metal just for a rough order of magnitude for their speed.  

Boltzmann’s constant k is about 1.38  10
23

 J K
1

 and the mass of the electron, m, is 

about 9.11  10
31

 kg.  If we assume that the temperature is about 27
o
C or 300 K, the root 

mean square electron speed would be about 1.2  10
5
m s

1
. 

 

Now consider a current of 1 A flowing in a copper wire of diameter 1 mm – i.e. cross-

sectional area 7.85  10
7

 m
2
.  The density of copper is 8.9 g cm

3
, and its “atomic 

weight”  (molar mass) is 63.5 g per mole, which means that there are 6.02  10
23

 

(Avogadro’s number) of atoms in 63.5 grams, or 8.44  10
22

  atoms per cm
3
 or 8.44  

10
28

 atoms per m
3
.  If we assume that there is one conduction electron per atom, then 

there are 8.44  10
28

  conduction electrons per m
3
, or, in our wire of diameter 1 mm, 6.63 

 10
22

 conduction electrons per metre. 

 

The speed at which the electrons are carrying the current of one amp is the current 

divided by the charge per unit length, and with the charge on a single electron being 1.60 

 10
19

 C, we find that the speed at which the electrons are carrying the current is about 

9.4  10
5

 m s
1

. 
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Thus we have this picture of electrons moving in random directions at a speed of about 

1.2  10
5
m s

1
 (the thermal motion) and, superimposed on that, a very slow drift speed of 

only 9.4  10
5

 m s
1

 for the electron current.  If you were able to see the electrons, you 

would see them dashing hither and thither at very high speeds, but you wouldn’t even 

notice the very slow drift in the direction of the current.   

 

When you connect a long wire to a battery, however, the current (the slow electron drift) 

starts almost instantaneously along the entire length of the wire.  If the electrons were in a 

complete vacuum, rather than in the interior of a metal, they would accelerate as long as 

they were in an electric field.  The electrons inside the metal also accelerate, but they are 

repeatedly stopped in their tracks by collisions with the metal atoms – and then they start 

up again.  If the temperature is increased, the vibrations of the atoms within the metal 

lattice increase, and this presumably somehow increases the resistance to the electron 

flow, or decreases the mean time or the mean path-length between collisions.   

 

In a semiconductor, most of the electrons are required for valence bonding between the 

atoms – but there are a few (much fewer than one per atom) free, conduction electrons.  

As the temperature is increased, more electrons are shaken free from their valence duties, 

and they then take on the task of conducting electricity.  Thus the conductivity of a 

semiconductor increases with increasing temperature. 

 

The temperature coefficient of resistance,  of a metal (or other substance) is the 

fractional increase in its resistivity per unit rise in temperature: 

 

    .
1

Td

d 


       4.3.1 

 

In SI units it would be expressed in K
1

.   However, in many practical applications the 

temperature coefficient is defined in relation to the change in resistance compared with 

the resistivity at a temperature of 20
o
C, and is given by the equation 

 

      ,)]20(1[20  t      4.3.2 

 

where t is the temperature in degrees Celsius. 

 

Examples:  

   Silver:       3.8    10
3

  C
 o
 
1

 

   Copper:     3.9    10
3

   

   Aluminium:  3.9    10
3

   

   Tungsten:  4.5    10
3

   

   Iron:   5.0    10
3

   

   Carbon:               10
3

   

   Germanium:         10
3

   

   Silicon              75    10

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Some metallic alloys with commercial names such as nichrome, manganin, constantan, 

eureka, etc., have fairly large resistivities and very low temperature coefficients. 

 
As a matter of style, note that the kelvin is a unit of temperature, much a the metre is a unit of length.  Thus, 

when discussing temperatures, there is no need to use the “degree” symbol with the kelvin.  When you are 

talking about some other temperature scale, such as Celsius, one needs to say “20 degrees on the Celsius 

scale” – thus 20
o
C.  But when one is talking about a temperature interval of so many Celsius degrees, this 

is written C
o
.  I have adhered to this convention above. 

 

The resistivity of platinum as a function of temperature is used as the basis of the 

platinum resistance thermometer, useful under conditions and temperatures where other 

types of thermometers may not be useful, and it is also used for defining a practical 

temperature scale at high temperatures.  A bolometer is an instrument used for detecting 

and measuring infrared radiation.  The radiation is focussed on a blackened platinum 

disc, which consequently rises in temperature.  The temperature rise is measured by 

measuring the increase in resistance.  A thermistor is a semiconducting device whose 

resistance is very sensitive to temperature, and it can be used for measuring or controlling 

temperature. 

 

 

4.4   Resistors in Series  

 

  

 

 

 

 

 

   

    .321 RRRR      4.4.1 

 

The current is the same in each.  The potential difference is greatest across the largest 

resistance. 

 

 

4.5  Conductors in Parallel 

          

     

 

     

          

 

                      

    

 

 

   .321 GGGG        4.5.1 

R1 R2 R3 

FIGURE IV.2 

FIGURE IV.3 

G1 

G2 

G3 
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That is to say  .1111

321 RRRR
      4.5.2 

 

The potential difference is the same across each.   The current is greatest through the 

largest conductance – i.e. through the smallest resistance. 

 

 

4.6  Dissipation of Energy 

 

When current flows through a resistor, electricity is falling through a potential difference.  

When a coulomb drops through a volt, it loses potential energy 1 joule.  This energy is 

dissipated as heat.  When a current of I coulombs per second falls through a potential 

difference of V volts, the rate of dissipation of energy is IV, which can also be written (by 

making use of Ohm’s law) ./or 22 RVRI  

 

If two resistors are connected in series, the current is the same in each, and we see from 

the formula RI 2 that more heat is generated in the larger resistance. 

 

If two resistors are connected in parallel, the potential difference is the same across each, 

and we see from the formula RV /2 that more heat is generated in the smaller resistance. 

 

 

4.7  Electromotive Force and Internal Resistance 

 

The reader is reminded of the following definition from section 4.1: 
 

Definition.  The potential difference across the poles of a cell when no current is being 

taken from it is called the electromotive force (EMF) of the cell.   

 

I shall use the symbol E  for EMF. 

 

Question.  A 4 resistance is connected across a cell of EMF 2 V.  What current flows? 

The immediate answer is 0.5 A – but this is likely to be wrong.  The reason is that a cell 

has a resistance of its own – its internal resistance.   The internal resistance of a lead-acid 

cell is typically quite small, but most dry cells have an appreciable internal resistance.  If 

the external resistance is R and the internal resistance is r, the total resistance of the 

circuit is R + r, so that the current that flows is E /(R  +  r). 

 

Whenever a current is taken from a cell (or battery) the potential difference across its 

poles drops to a value less than its EMF.  We can think of a cell as an EMF in series with 

an internal resistance: 
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If we take the point A as having zero potential, we see that the potential of the point B 

will be EI r, and this, then, is the potential difference across the poles of the cell when 

a current I is being taken from it.   

 

Exercise.  Show that this can also be written as .
rR

R



E
  

  

 

4.8   Power Delivered to an External Resistance 

 

Question:  How much heat will be generated in the external resistance R if R = 0? 

Answer:   None! 

 

Question:  How much heat will be generated in the external resistance R if R = ? 

Answer:   None! 

 

Question:  How much heat will be generated in the external resistance R if R is 

something? 

Answer:   Something! 

 

This suggests that there will be some value of the external resistance for which the power 

delivered, and heat generated, will be a maximum, and this is indeed the case. 

 

The rate at which power is delivered, and dissipated as heat, is 

 

   .
)( 2

2
2

rR

R
RIP




E
     4.8.1 

 

In figure IV.5 I have plotted the power (in units of E  2
/R) versus R/r.   Differentiation of 

the above expression (do it!) will show that the power delivered reaches a maximum of 

  
A 

FIGURE IV.4 

B R I E r 
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)4/(2 RE when R = r;  that is, when the external resistance is “matched” to the internal 

resistance of the cell.  This is but one example of many in physics and engineering in 

which maximum power is delivered to a load when the load is matched to the internal 

load of the power source. 

 

Exercise.   A 6V battery with an internal resistance of 0.5  is connected to an external 

resistance.  Heat is generated in the external resistance at a rate of 12 W.  What is the 

value of the external resistance?   

 

Answer.  1.87 or  0.134 . 
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FIGURE IV.5

 
 

 

 

4.9   Potential Divider 

 

The circuit illustrated in figure IV.6 is a potential divider.    

 

It may be used to supply a variable voltage to an external circuit.  It is then called a 

rheostat. 
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Or it may be used to compare potential differences, in which case it is called a 

potentiometer.   (In practice many people refer to such a device as a “pot”, regardless of 

the use to which it is put.) 

     

 

 

 

 

  

 

 

 

 

 

 

 

 

For example, in figure IV.7, a balance point (no current in the ammeter, A) is found when 

the potential drop down the length x of the resistance wire is equal to the EMF of the 

small cell.  (Note that, since no current is being taken from the small cell, the potential 

difference across its poles is indeed the EMF.)  One could compare the EMFs of two cells 

in this manner, one of which might be a “standard cell” whose EMF is known. 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

In figure IV.8, a current is flowing through a resistor (which is assumed to be in part of 

some external circuit, not drawn), and, assuming that the potential gradient down the 

potentiometer has been calibrated with a standard cell, the potentiometer is being used to 

measure the potential difference across the resistor.  That is, the potentiometer is being 

used as a voltmeter. 

 

 

 

 

 

  

FIGURE IV.6 

  

FIGURE IV.7 

A 

x 
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4.10   Ammeters and Voltmeters 

 

For the purpose of this section it doesn’t matter how an ammeter actually works.  Suffice 

it to say that a current flows through the ammeter and a needle moves over a scale to 

indicate the current, or else the current is indicated as numbers in a digital display.  In 

order to measure the current through some element of a circuit, the ammeter is placed, of 

course, in series with the element.  Generally an ammeter has rather a low resistance. 

 

An inexpensive voltmeter is really just an ammeter having rather a high resistance.  If you 

want to measure the potential difference across some circuit element, you place the 

voltmeter, of course, across that element (i.e. in parallel with it).  A small portion of the 

current through the element is diverted through the meter; the meter measures this 

current, and, from the known resistance of the meter, the potential difference can be 

calculated – though in practice nobody does any calculation – the scale is marked in 

volts.  Placing a meter across a circuit element in fact slightly reduces the potential 

difference across the element – that is, it reduces the very thing you want to measure.  

But, because a voltmeter typically has a high resistance, this effect is small.  There are, of 

course, modern (and more expensive) voltmeters of a quite different design, which take 

no current at all, and genuinely measure potential difference, but we are concerned in this 

section with the commonly-encountered ammeter-turned-voltmeter.  It may be noticed 

that the potentiometer described in the previous section takes no current from the circuit 

element of interest, and is therefore a true voltmeter. 

 

There are meters known as “multimeters” or “avometers”  (for amps, volts and ohms), 

which can be used as ammeters or as voltmeters, and it is with these that this section is 

concerned. 

 

A typical inexpensive ammeter gives a full scale deflection (FSD) when a current of 15 

mA = 0.015 A flows through it.  It can be adapted to measure higher currents by 

connecting a small resistance (known as a “shunt”) across it.   

  

FIGURE IV.8 

A 
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Let’s suppose, for example, that we have a meter that which shows a FSD when a current 

of 0.015 A flows through it, and that the resistance of the meter is 10 .  We would like 

to use the meter to measure currents as high as 0.15 A.  What value of shunt resistance 

shall we put across the meter?  Well, when the total current is 0.15 A, we want 0.015 A to 

flow through the meter (which then shows FSD) and the remainder, 0.135 A, is to flow 

through the shunt.  With a current of 0.015 A flowing through the 10  meter, the 

potential difference across it is 0.15 V.  This is also the potential difference across the 

shunt, and, since the current through the shunt is 0.135 A, the resistance of the shunt must 

be 1.11 . 

 

We can also use the meter as a voltmeter.  Suppose, for example, that we want to measure 

voltages (horrible word!) of up to 1.5 V.  We place a large resistance R in series with the 

meter, and then place the meter-plus-series-resistance across the potential difference to 

measured.  The total resistance of meter-plus-series-resistance is (10 + R), and it will 

show a FSD when the current through it is 0.015 A.   We want this to happen when the 

potential difference across it is 1.5 volts.  This 1.5  =   0.015 × (10 + R), and so R  =  90 

. 

 

 

4.11   Wheatstone Bridge 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G 

R1 R2 

R3 R4 

FIGURE IV.9 
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The Wheatstone bridge can be used to compare the value of two resistances – or, if the 

unknown resistance is compared with a resistance whose value is known, it can be used 

to measure an unknown resistance.  R1 and R2 can be varied.  R3 is a standard resistance 

whose value is known.  R4 is the unknown resistance whose value is to be determined.  G 

is a galvanometer.  This is just a sensitive ammeter, in which the zero-current position 

has the needle in the middle of the scale; the needle may move one way or the other, 

depending on which way the current is flowing.  The function of the galvanometer is not 

so much to measure current, but merely to detect whether or not a current is flowing in 

one direction of another.  In use, the resistances R1 and R2 are varied until no current 

flows in the galvanometer.  The bridge is then said to be “balanced” and 

,// 4321 RRRR   and hence the unknown resistance is given by ./ 2314 RRRR   

     

 

4.12   Delta-Star Transform     

 

Consider the two circuits (each enclosed in a black box) of figure IV.10. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The configuration in the left hand box is called a “delta”  () and the configuration in the 

right hand box is called a “star” or a “Y”.  I have marked against each resistor its 

resistance and its conductance, the conductance, of course, merely being the reciprocal of 

the resistance.  I am going to suppose that the resistance between the terminals X and Y is 

the same for each box.  In that case: 

 

   .
)(

321

213
21

RRR

RRR
rr




      4.12.1 

 

We can get similar equations for the terminal pairs Y,Z and Z,X.  Solving the three 

equations for r1 , r2 and r3, we obtain 

X 

Z 

R1 ,  G1 

R3 ,  G3 

R2 ,  G2 

  

 

Y X 

Z 

  

 

Y 

r1 , g1 r2 , g2 

r3 , g3 

FIGURE IV.10 
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321

32
1

RRR

RR
r


       4.12.2 

 

   
321

13
2

RRR

RR
r


       4.12.3 

 

and   .
321

21
3

RRR

RR
r


       4.12.4 

 

In terms of the conductances, these are 

 

   ,

1

211332
1

G

GGGGGG
g


      4.12.5 

 

   
2

211332
2

G

GGGGGG
g


      4.12.6 

 

and   .

3

211332
3

G

GGGGGG
g


      4.12.7 

 

The converses of these equations are: 
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r
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R


      4.12.8 
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2
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2

r

rrrrrr
R


      4.12.9 
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3
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3
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rrrrrr
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
      4.12.10 
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
      4.12.11 
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2
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G


      4.12.12 

 

and   .
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3

ggg

gg
G


      4.12.13 
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That means that, if the resistances and conductances in one box are related to the 

resistances and conductances in the other by these equations, then you would not be able 

to tell, if you had an ammeter, and a voltmeter and an ohmmeter, which circuit was in 

which box.  The two boxes are indistinguishable from their electrical behaviour. 

 

These equations are not easy to commit to memory unless you are using them every day, 

and they are sufficiently awkward that mistakes are likely when evaluating them 

numerically.  Therefore, to make the formulas useful, you should programme your 

calculator or computer so that they will instantly convert between delta and star without 

your ever having to think about it.  The next example shows the formulas in use.  It will 

be heavy work unless you have programmed your computer in advance – but if you have 

done so, you will see how very useful the transformations are. 

 

Example.   Calculate the resistance between the points A and B in the figure below.  The 

individual resistances are given in ohms. 

 

 

 

 

    

 

 

 

 

 

At first, one doesn’t know how to start.  But notice that the 1, 3 and 4 ohm resistors are 

connected in delta and the circuit is therefore equivalent to 

    

 

 

 

 

 

 

 

 

 

After that, it is easy, and you will soon find that the resistance between A and B is 2.85 

. 

 

 

4.13   Kirchhoff’s Rules 

 

There are two h’s in his name, and there is no tch sound in the middle.  The pronunciation 

is approximately keerr–hhofe.    

 

1 8 

  

3 

4 

2 

A B 

8 

 

2 

B 
 

A 0.375 
1.5 

0.5 
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The rules themselves are simple and are self-evident.  What has to be learned, however, is 

the art of using them. 

 

K1:  The net current going into any point in a circuit is zero;  expressed otherwise, the 

sum of all the currents entering any point in a circuit is equal to the sum of all the 

currents leaving the point. 

 

K2:   The sum of all the EMFs and IR products in a closed circuit is zero.  Expressed 

otherwise, as you move around a closed circuit, the potential will sometimes rise and 

sometimes fall as you encounter a battery or a resistance; but, when you come round 

again to the point where you started, there is no change in potential. 

 

 

Example.     

 

  

 

 

 

 

 

 

 

 

 

 

 

In the above circuit, the 24 V battery is assumed to have negligible internal resistance.  

Calculate the current in each of the resistors. 

 

The art of applying Kirchhoff’s rules is as follows. 

 

1.  Draw a large circuit diagram in pencil. 

 

2.  Count the number of independent resistors.  (Two in series with nothing in between 

don’t count as independent.)   This tells you how many independent equations you can 

obtain, and how many unknowns you can solve for.  In this case, there are five 

independent resistors; you can get five independent equations and you can solve for five 

unknowns. 

 

3.   Mark in the unknown currents.  If you don’t know the directions of some of them, 

don’t spend time trying to think it out.  Just make a wild guess.  If you are wrong, you 

will merely get a negative answer for it.  Those who have some physical insight might 

already guess (correctly) that I have marked I5 in the wrong direction, but that doesn’t 

matter. 

 

1 8 

  

3 

4 

2 

A B 

24 V 

I4 

I5 



I1 

I2 

I3 







C 

D 

O 



 18 

4.  Choose any closed circuit and apply K2.  Go over that closed surface in ink.  Repeat 

for several closed circuits until the entire diagram is inked over.  When this happens, you 

cannot get any further independent equations using K2.  If you try to do so, you will 

merely end up with another equation that is a linear combination of the ones you already 

have,   

 

5.   Make up the required number of equations with K1. 

 

Let us apply these to the present problem.  There are five resistors; we need five 

equations.  Apply K2 to OACBO.  Start at the negative pole of the battery and move 

counterclockwise around the circuit.  When we move up to the positive pole, the potential 

has gone up by 24 V.  When we move down a resistor in the direction of the current, the 

potential goes down.    For the circuit OACBO, K2 results in 

 

   .02324 31  II  

 

Now do the same this with circuit OADBO: 

 

   ,0824 42  II  

 

and with circuit ACDA: 

 

   .043 251  III  

 

If you have conscientiously inked over each circuit as you have done this, you will now 

find that the entire diagram is inked over.  You cannot gain any further independent 

equations from K2.  We need two more equations.  Apply K1 to point C: 

 

   ,531 III   

 

and to point D: .524 III   

 

You now have five independent linear equations in five unknowns and you can solve 

them.  (Methods for solving simultaneous linear equations are given in Chapter 1, Section 

1.7 of Celestial Mechanics.)   The solutions are: 

 

       .A927.1,A453.2,A956.5,A380.4,A029.4 54321  IIIII  

 

 

4.14   Tortures for the Brain 

 

I don’t know if any of the examples in this section have any practical applications, but 

they are excellent ways for torturing students, or for whiling away rainy Sunday 

afternoons. 
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      4.14.1   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The drawing shows 12 resistances, each of value r, arranged along the edges of a cube.  

What is the resistance across opposite corners of the cube? 

 

 

     4.14.2 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

12 V 

A 

B 
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The drawing shows six resistors, each of resistance 1 , arranged along the edges of a 

tetrahedron.  A 12 V battery is connected across one of the resistors.  Calculate the 

current between points A and B. 

    

 

     4.14.3 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows six resistors, whose resistances in ohms are marked, arranged along the 

edges of a tetrahedron.  Calculate the net resistance between C and D. 

 

 

     4.14.4   R1 = 8  and R2 = 0.5 are connected across a battery.  The rate at which 

heat is generated is the same whether they are connected in series or in parallel.  What is 

the internal resistance r of the battery?  

 

    4.14.5      R1 = 0.25  and R2 = ? are connected across a battery whose internal 

resistance r  is 0.5 .  The rate at which heat is generated is the same whether they are 

connected in series or in parallel.  What is the value of R2? 
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     4.14.6   

 

 

 

 

 

 

 

 

     

   In the above circuit, each resistance is 1 ohm.  What is the net resistance between A and 

B if the chain is of infinite length? 

 

    4.14.7   What is the resistance between A and B in question 4.14.6 if the chain is not of 

infinite length, but has n “links” – i.e. 2n resistors in all? 

 

   4.14.8 

 

   In the circuit below, what is the potential difference between A and B, and what is the 

current in each resistor? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.14.9  What is the net resistance between A and D? - 

 

    

 

 

 

 

 

 

 

 

A 

B 

6 V 12 V 4 V 

2  3  2 

  A

  B

3 

4 

2 

6 

5 

A 

B 

C 

D 
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4.15  Solutions, Answers or Hints to 4.14 

 

    Hints for 4.14.1.  Imagine a current of 6I going into the bottom left hand corner.  

Follow the current through the cube, writing down the current through each of the 12 

resistors.  Also write down the potential drop across each resistor, and hence the total 

potential drop across the cube.  I make the answer for the effective resistance of the 

whole cube .
6
5 r  

    

    Solution for 4.14.2.  By symmetry, the potentials of A and B are equal.  Therefore 

there is no current between A and B. 

 

    Hint for 4.14.3.   Replace the heavily-drawn delta with its corresponding star.  After 

that it should be straightforward, although there is a little bit of calculation to do.  I make 

the answer 1.52 . 

 

   Solution for 4.14.    From equation 4.8.1, the rate at which heat is generated in a 

resistance R connected across a battery of EMF E and internal resistance r is .
)( 2

2

rR

R



E
 

 

If the resistors are connected in series, ,21 RRR  while if they are connected in 

parallel, .

21

21

RR

RR
R


   If the heat generated is the same in either case, we must have 

 

   .
)(

2

21

21

21

21

2

21

21




















r
RR

RR

RR

RR

rRR

RR
 

 

After some algebra, we obtain 

 

 

   .

1
1

2

2

1

2121






R

R

R

R

RRRR
r      4.15.1 

 

With R1 = 8  and R2  =  0.5 , we obtain r = 2.00  .   
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Solution for 4.14.5.       

 

In equation 4.15.1, let .and
1

2

1

x
R

R
a

R

r
   The equation 4.15.1 becomes 

 

   .
1)/1(

1 2






xx

xx
a       4.15.2 

 

Upon rearrangement, this is 

 

   .0)1()1( 32  xxaxaa     4.15.3 

 

In our example, ,2
25.0

50.0

1


R

r
a  so that equation 4.15.4 is 

 

   ,0332 32  xxx    

 

or   .0)1)(2( 2  xxx  

 

The only real root is x = 2.  But  .125.0 22

12  xxRR  

 

 

 

 

Solution to 4.14.6 Suppose that there are n links (2n resistors) to the right of the 

dotted line, and that the effective resistance of these n links is Rn.  Add one more link, to 

the left.  The effective resistance of the n + 1 links is then  

 

    .
1

12
1






n

n
n

R

R
R       4.15.4 

 

As ., 1 RRRn nn     .01or,
1

12 2 



 RR

R

R
R  

 

Whence,  .989033618.1)15(
2
1 R  

 

 

Solution to 4.14.7     By repeated application of equation 4.15.4, we find: 
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989033618.112

990033618.111

999033618.110

056034618.19

448034618.18

135037618.17

556055618.16

818181618.15

619047619.14

000000625.13

667666666.12

21

46368
75025

17711
28657

6765
10946
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377
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144
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34

8
13

3
5























nRn

 

 

 

Inspection shows that  ,

2

12

n

n

n
F

F
R


  where Fm is the mth member of the Fibonacci 

sequence: 1     1     2     3     5     8     13     21 ...... 

 

But, from the theory of Fibonacci sequences, 
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Solution to 4.14.8      

 

 

 

 

 

 

 

 

 
6 V 12 V 4 V 

2  3  2 

  A  I1   I2

  I3

  B
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  I’ll call the potential at B (and at the negative poles of each cell) zero, which is 

equivalent to grounding (earthing) the point B; and I’ll call the potential at A  V. 

I don’t think all of the currents will be in the direction indicated on the drawing.  One or 

more must be in the other direction, and one or more of the cells are being re-charged.  I 

don’t know which is wrong, so I’ll just leave them as drawn for the time being, and we’ll 

see what happens.  Apply Ohm’s law to each resistor in turn: 

2

4
;

3

12
;

2

6
321










V
I

V
I

V
I  amps, and apply Kirchhoff’s first rule to 

A:   .0321  III    From these, we obtain V  =  6.750 V,  I1 =  0.375 A,  I2 = 1.75 A, 

I2 = 1.375 A. 

 

 

Solution to 4.14.9      

 

Let us start by re-drawing the circuit.  Numbers are the resistances in ohms. 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have a star (3,4,2), which can be transformed to a delta; and 

we have a delta (3,2,5), which can be transformed to a star. 

 

I elect to convert the delta to a star. You could try the other way and see how it goes. 

I use my computer program which instantly does the delta-star transformation. 
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Re-draw: 

    

 

 

 

 

 

 

 

 

 

 

Very soon after that I arrive at    R  =  21.78 

 

 

 

 

 

 

 

4.16 Attenuators 

 

These are networks, usually of resistors, that serve the dual purpose of supplying more 

examples for students or for reducing the voltage, current or power from one circuit to 

another.  An example of the former might be: 
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You might be told the values of the four left-hand resistances and of the EMF of the cell, 

and you are asked to find the current in the right hand resistor. 

 

On the other hand, if the object is to design an attenuator, you might be told the values of 

the resistances at the two ends, and you are required to find the resistances of the three 

middle resistors such that the current in the rightmost resistor is half the current in the left 

hand resistor.  The three intermediate resistances perform the function of an attenuator. 

 

In the drawing below, A is some sort of a device, or electrical circuit, or, in the simplest 

case, just a battery, which has an electromotive force E and an internal resistance RA.  C 
is some other device, whose internal resistance is RC.  B is an attenuator, which is a 

collection of resistors which you want to design so that the current delivered to C is a 

certain fraction of the current flowing from A;  or so that the voltage delivered across the 

terminals of  C is a certain fraction of the voltage across the terminals of A;  or perhaps 

again so that the power delivered to C is a certain fraction of the power generated by A. 

The circuit in the attenuator has to be designed so as to achieve one of these goals. 

 

 

 

 

 

 

 

 

 

  

   

 

 

Four simple attenuators are known as T,  H,  or square, named after their shapes.  In 

the drawing below, the H is on its side, like this:   
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Let us look at a T attenuator.   We’ll suppose that the A device has an electromotive force 

E and an internal resistance R, and indeed it can be represented by a cell in series with a 

resistor.  And we’ll suppose that the resistance of the C device is also R and it can be 

represented by a single resistor.  We’ll suppose that we want the current that flows into C 
to be a fraction a of the current flowing out of A, and the voltage to be supplied to C to 

be a fraction a of the potential difference across the output terminals of A.  What must be 

the values of the resistances in the T attenuator?   I’ll call them r1R and r2R, so that we 

have to determine the dimensionless ratios r1 and r2.   The equivalent circuit is: 
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The current leaving the battery is I, and we want the current entering the load at the right 

hand side to be aI.  The current down the middle resistor is then necessarily, by 

Kirchhoff’s first rule, Ia)1(  .   If we apply Kirchhoff’s second rule to the outermost 

circuit, we obtain (after algebraic reduction) 

 

.)1)(1( 1 IRraE      4.16.1 

 

We also want the potential difference across the load (i.e. across EF), which, by Ohm’s 

law, is aIR, to be a times the potential difference across the source AB.   AB are the 

terminals of the source.  Recall that E  is the EMF of the source, and R its internal 

resistance, so that, when a current I is being taken from the source, the potential 

difference across its terminals AB is E    IR, and we want aIR to be a times this. The 

fraction a can be called the voltage reduction factor of the attenuator.   Thus we have 

 

                         ).( IREaaIR       4.16.2 

 

From these two equations we obtain 

 

      .
1

1
1

a

a
r




       4.16.3 

 

Application of Kirchhoff’s second rule to the right hand circuit gives 

 

,)1()1( 12 IRraIRar       4.16.4 

 

which, in combination with equation 4.16.3, yields 

 

       .
1

2
22

a

a
r


       4.16.5 

 

Thus, if source and load resistance are each equal to R, and we want a voltage reduction 

factor of 
2
1 , we must choose r1R to be R

3
1 , and r2R to be R

3
4 . 

 

You might like to try the same problem for the     ,  and square attenuators.  I am not 

absolutely certain (I haven’t checked them carefully), but I believe the answers are: 
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For : 

H
 

H
 



 30 

a

a
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2     4.16.7 

 

For square : 
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