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CHAPTER 2 

ELECTROSTATIC POTENTIAL 

 

 

2.1   Introduction 

 

Imagine that some region of space, such as the room you are sitting in, is permeated by 

an electric field.  (Perhaps there are all sorts of electrically charged bodies outside the 

room.)  If you place a small positive test charge somewhere in the room, it will 

experience a force F  =  QE.  If you try to move the charge from point A to point B 

against the direction of the electric field, you will have to do work.  If work is required to 

move a positive charge from point A to point B, there is said to be an electrical potential 

difference between A and B, with point A being at the lower potential.  If one joule of 

work is required to move one coulomb of charge from A to B, the potential difference 

between A and B is one volt (V). 

 

The dimensions of potential difference are ML
2
T

2
Q

1
.    

 

All we have done so far is to define the potential difference between two points.  We 

cannot define “the” potential at a point unless we arbitrarily assign some reference point 

as having a defined potential.  It is not always necessary to do this, since we are often 

interested only in the potential differences between points, but in many circumstances it 

is customary to define the potential to be zero at an infinite distance from any charges of 

interest.  We can then say what “the” potential is at some nearby point.   Potential and 

potential difference are scalar quantities. 

 

Suppose we have an electric field E in the positive x-direction (towards the right).  This 

means that potential is decreasing to the right.  You would have to do work to move a 

positive test charge Q to the left, so that potential is increasing towards the left.  The 

force on Q  is QE, so the work you would have to do to move it a distance dx to the right 

is QE dx, but by definition this is also equal to Q dV, where dV is the potential 

difference between x and x + dx.   

 

Therefore     .
dx

dV
E            2.1.1 

 

In a more general three-dimensional situation, this is written 
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We see that, as an alternative to expressing electric field strength in newtons per 

coulomb, we can equally well express it in volts per metre (V m
1

). 

 

The inverse of equation 2.1.1 is, of course, 
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    .constant  dxEV        2.1.3 

 

 

 

2.2   Potential Near Various Charged Bodies 

 

 

  2.2.1   Point Charge 

 

Let us arbitrarily assign the value zero to the potential at an infinite distance from a point 

charge Q.  “The” potential at a distance r from this charge is then the work required to 

move a unit positive charge from infinity to a distance r. 

 

At a distance x from the charge, the field strength is .
4 2

0 x

Q


  The work required to 

move a unit charge from x to x + x is 
2

04 x

xQ




 .  The work required to move unit 

charge from r to infinity is .
44 0

2

0 r

Q

x

dxQ

r 



 



  The work required to move unit 

charge from infinity to r is minus this. 

 

Therefore   .
4 0 r

Q
V


          2.2.1 

 

 

  The mutual potential energy of two charges Q1 and Q2 separated by a distance r is the 

work required to bring them to this distance apart from an original infinite separation.  

This is 

    .
4
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          2.2.2 

 

 

Before proceeding, a little review is in order. 

 

Field at a distance r from a charge Q: 

 

    ,
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1
   or  V m

1
  

 

 

or, in vector form,         .
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Force between two charges, Q1 and Q2: 

 

    .
4 2

21

r

QQ
F


     N 

 

Potential at a distance r from a charge Q: 

  

    .
4 0 r

Q
V


     V 

 

Mutual potential energy between two charges: 

 

 

    .
4

P.E.
0

21

r

QQ


    J 

 

We couldn’t possibly go wrong with any of these, could we? 

 

 

 

  2.2.2    Spherical Charge Distributions 

 

Outside any spherically-symmetric charge distribution, the field is the same as if all the 

charge were concentrated at a point in the centre, and so, then, is the potential.  Thus 

 

    .
4 0 r

Q
V


           2.2.3 

 

Inside a hollow spherical shell of radius a and carrying a charge Q the field is zero, and 

therefore the potential is uniform throughout the interior, and equal to the potential on the 

surface, which is 

 

    .
4 0 a

Q
V


          2.2.4 

 

A solid sphere of radius a bearing a charge Q that is uniformly distributed throughout the 

sphere is easier to imagine than to achieve in practice, but, for all we know, a proton 

might be like this (it might be – but it isn’t!), so let’s calculate the field at a point P inside 

the sphere at a distance r  (< a) from the centre.   See figure II.1  

 

We can do this in two parts.  First the potential from the part of the sphere “below” P.  If 

the charge is uniformly distributed throughout the sphere, this is just .
4 0 r

Qr


   Here Qr is 
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the charge contained within radius r, which, if the charge is uniformly distributed 

throughout the sphere, is .)/( 33 arQ  Thus, that part of the potential is .
4 3
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Next, we calculate the contribution to the potential from the charge “above” P.   Consider 

an elemental shell of radii x ,  x + x.  The charge held by it is 

.34
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    The contribution to the potential at P from the charge 

in this elemental shell is .
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  The contribution to the potential from all 

the charge “above” P is .
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    Adding together the two parts 

of the potential, we obtain 
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FIGURE II.1 
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  2.2.3   Long Charged Rod 

 

The field at a distance r from a long charged rod carrying a charge  coulombs per metre 

is .
2 0 r


   Therefore the potential difference between two points at distances a and b 

from the rod  (a  <  b) is 
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      2.2.6 

 

 

  2.2.4   Large Plane Charged Sheet 

 

The field at a distance r from a large charged sheet carrying a charge  coulombs per 

square metre is .
2 0


   Therefore the potential difference between two points at distances 

a and b from the sheet  (a  <  b) is 

 

   .)(
2 0

abVV ba 
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
      2.2.7 

 

   2.2.5  Potential on the Axis of a Charged Ring 

 

The field on the axis of a charged ring is given in section 1.6.4.  The reader is invited to 

show that the potential on the axis of the ring is  

 

   .
)(4 2/122

0 xa

Q
V


      2.2.8 

 

You can do this either by integrating the expression for the field or just by thinking about 

it for a few seconds and realizing that potential is a scalar quantity. 
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2.2.6 Potential in the Plane of a Charged Ring 

 

We suppose that we have a ring of radius a bearing a charge Q.  We shall try to find the 

potential at a point in the plane of the ring and at a distance )0( arr  from the 

centre of the ring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider an element  of the ring at P.  The charge on it is 




2

Q
.  The potential at A 

due this element of charge is 
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where  22/1 arb    and ./2 arc    The potential due to the charge on the entire ring 

is 

 

.
cos.4 00 
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Q
V      2.2.10 

 

This requires a numerical integration for each value of ar / .  For those familiar with 

elliptic integrals, this can also be written: 

 

 

A 

P 

a 

r 
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)1(
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  ,                                          2.2.11 

 

where )( 2kK  is the elliptic integral of the first kind, and 
2

2

)/(1

/4

ar

ar
k


  .  Thus the 

numerical integration can be avoided if one has available a table of elliptic integrals.  

Most of us are not familiar with the function )( 2kK , nor do we have a table of the 

function, so we cannot avoid a numerical integration, and we have to evaluate the elliptic 

integral by numerical integration of 

   

.

sin1
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I have evaluated the potential by numerical integration of equation 2.2.10, and also by 

numerical integration of equations 2.2.11 and 2.2.12, with nine-digit agreement between 

the two methods, with the result shown below. 

 
The field is equal to the gradient of this and is directed towards the centre of the ring.  It 

looks as though a small positive charge would be in stable equilibrium at the centre of the 

ring, and this would be so if the charge were constrained to remain in the plane of the 

ring.  But, without such a constraint, the charge would be pushed away from the ring if it 
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strayed at all above or below the plane of the ring.  In other words, in three dimensions, 

the potential at the centre is a saddle-point. 

 

 

  2.2.7  Potential on the Axis of a Charged Disc 

 

The field on the axis of a charged disc is given in section 1.6.5.  The reader is invited to 

show that the potential on the axis of the disc is  

 

   .])[(
4

2 2/122
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     2.2.9 

 

 

2.3   Electron-volts 

 

The electron-volt is a unit of energy or work.  An electron-volt (eV) is the work required 

to move an electron through a potential difference of one volt.  Alternatively, an electron-

volt is equal to the kinetic energy acquired by an electron when it is accelerated through a 

potential difference of one volt.  Since the magnitude of the charge of an electron is about 

1.602  10
19

 C, it follows that an electron-volt is about 1.602  10
19

 J.  Note also that, 

because the charge on an electron is negative, it requires work to move an electron from a 

point of high potential to a point of low potential. 

 

Exercise.   If an electron is accelerated through a potential difference of a million volts, 

its kinetic energy is, of course, 1 MeV.  At what speed is it then moving? 

 

First attempt.                        .2

2
1 eVm v  

 

(Here eV, written in italics, is not intended to mean the unit electron-volt, but e is the 

magnitude of the electron charge, and V is the potential difference (10
6
 volts) through 

which it is accelerated.)   Thus ./2 meVv    With m = 9.109  10
31

 kg, this comes 

to v  =  5.9  10
8
 m s

1
.  Oops!   That looks awfully fast!   We’d better do it properly this 

time. 

 

Second attempt.  .)1( 2 eVmc    

 

Some readers will know exactly what we are doing here, without explanation.  Others 

may be completely mystified.   For the latter, the difficulty is that the speed that we had 

calculated was even greater than the speed of light.  To do this properly we have to use 

the formulas of special relativity.  See, for example, Chapter 15 of the Classical 

Mechanics section of these notes. 

 

At any rate, this results in    =  2.958, whence  =  0.9411  and v  = 2.82  10
8
 m s

1
. 
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2.4  A Point Charge and an Infinite Conducting Plane 

 

 

An infinite plane metal plate is in the xy-plane.  A point charge +Q is placed on the z-axis 

at a height h above the plate.  Consequently, electrons will be attracted to the part of the 

plate immediately below the charge, so that the plate will carry a negative charge density 

 which is greatest at the origin and which falls off with distance  from the origin.  Can 

we determine ()?  See figure II.2 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, note that the metal surface, being a conductor, is an equipotential surface, as is any 

metal surface.  The potential is uniform anywhere on the surface.  Now suppose that, 

instead of the metal surface, we had (in addition to the charge +Q at a height h above the 

xy-plane), a second point charge, Q, at a distance h below the xy-plane.  The potential in 

the xy-plane would, by symmetry, be uniform everywhere.  That is to say that the 

potential in the xy-plane is the same as it was in the case of the single point charge and 

the metal plate, and indeed the potential at any point above the plane is the same in both 

cases.  For the purpose of calculating the potential, we can replace the metal plate by an 

image of the point charge.  It is easy to calculate the potential at a point (z , ).  If we 

suppose that the permittivity above the plate is 0, the potential at (z , ) is 
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FIGURE II.2 
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The field strength E in the xy-plane is  V z/  evaluated at z = 0, and this is 

 

    E
Q h

h
 



2

4 0

2 2 3 2 
.
( )

.
/

    2.4.2 

 

The D-field is 0 times this, and since all the lines of force are above the metal plate, 

Gauss's theorem provides that the charge density is  = D, and hence the charge density 

is 

 

    
 

 


Q h

h2 2 2 3 2
.
( )

.
/

    2.4.3 

 

This can also be written 
 

 
Q h

2 3
. ,     2.4.4 

 

where  2 2 2  h , with obvious geometric interpretation. 

 

Exercise:  How much charge is there on the surface of the plate within an annulus 

bounded by radii   and  +  d?  Integrate this from zero to infinity to show that the 

total charge induced on the plate is Q. 

 

2.5  A Point Charge outside a Conducting Sphere 

 

   I am indebted here to Alain Charbonneau who drew my attention to the distinction 

between the two cases – where the sphere is grounded (in UK nomenclature “earthed”): 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE II.3a 
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and where it is isolated: 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE II.3b 

 

 

 

 

and for describing the physics of the differences between the two cases with exceptional 

lucidity and limpidity. 

 

 

   Before embarking on the calculation it may be useful to imagine qualitatively what 

happens in the two cases.   

 

 

Total charge on the sphere 

 

We suppose that intially the sphere is uncharged.   

 

If the sphere is isolated, the total charge on it remains zero, regardless of the distance of 

the point charge. 

   

If the sphere is grounded, it acquires a negative charge (from the ground), which 

increases as it is approached by the positive point charge.  This charge is distributed (not 

uniformly) over the surface of the sphere. 

 

Potential of the sphere 

 

In both cases – isolated and grounded – the potential is uniform over the surface of the 

conducting sphere.  If this were not so, a current would flow over the surface until the 

potential were to become uniform. 

 

 

• 
+Q 
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If the sphere is grounded, its potential is the same as the potential of the ground, taken to 

be zero. 

 

If the sphere is isolated, its potential is positive , owing to the presence of the point 

charge.  If it is then grounded, it sucks electrons from the ground until its potential drops 

to zero.   

 

Electric field inside the sphere 

 

Since the potential in both cases  (isolated and grounded) is uniform over the surface of 

the sphere, the electric field E inside the sphere is zero for both cases (isolated and 

grounded) regardless of the distance of the point charge.   

 

Distribution of surface charge density over the surface of the sphere 

 

If the sphere is isolated, the surface charge density is not uniform.  A portion of the 

sphere facing the external point charge has a negative surface charge density; the 

remainder of the sphere has a positive surface charge density.  The total charge on the 

sphere is zero.  The electric field at a point inside the sphere is the vector sum of the field 

from the external point charge and the charge distribution over the surface of the sphere, 

and, as pointed out in the previous paragraph, this field is zero. 

 

If the sphere is now grounded, it acquires a negative charge.  Since the field inside the 

sphere is still zero, this newly-acquired electric charge must be distributed uniformly over 

the surface.  The net surface charge density at a point is the sum of the non-uniformly 

distributed surface charge density arising from the presence of the external point charge 

and the uniformly-distributed negative charge sucked from the ground. 

 

Having understood the problem qualitatively, we are now ready to embark upon the 

quantitative calculation. 

 

    2.5a  The sphere is grounded 
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FIGURE II.3c 
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   A point charge +Q is at a point Q at a distance R from the centre O of a grounded metal 

sphere of radius a.  We are going to try to calculate the surface charge density induced on 

the surface of the sphere, as well as the total charge induced on the sphere, as a function 

of position on the surface.   

 

 Let us construct a point I such that the triangles OPI and OQP are similar, with the 

lengths shown in figure II.3c.   The length OI is a
2
/R.     Then R a/ / ,   or 

 

     
1

0
 

 
a R/

.    2.5.1 

 

This relation between the variables  and  is in effect the equation to the sphere 

expressed in these variables. 

 

Now suppose that, instead of the metal sphere, we had (in addition to the charge +Q at a 

distance R from O), a second point charge (a/R)Q at I.   The locus of points where the 

potential is zero is where 
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    2.5.2 

 

That is, the surface of our sphere.  Thus, for purposes of calculating the potential, we can 

replace the metal sphere by an image of Q at I, this image carrying a charge of (a/R)Q. 

 

Let us take the line OQ as the z-axis of a coordinate system.  Let X be some point such 

that OX = r and the angle XOQ = .  The potential at P from a charge +Q at Q and a 

charge (a/R)Q at I is (see figure II.3d) 
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The E field on the surface of the sphere is  V r/  evaluated at r  =  a.  The D field is 0 

times this, and the surface charge density is equal to D.   After some patience and algebra, 

we obtain, for a point on the surface of the sphere  (where, of course, X and P are 

coincident), 

 

 

 

 

 

 

 

FIGURE  II.3d 
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(                )
  ⁄
        

  (      )

     
 

 

2.5.3 

 Let   
 

 
 (dimensionless); then equation 2.5.3 can be written 

 

         
 (       )

    
   

 

(              )  ⁄
 

 

2.5.4 

This is shown in figure 11.4a for for  =  2, 3.5 and 5, in which the surface charge density 

is in units of Q/(a

. 

 
FIGURE 11.4a 

   It may be of interest to see how the surface charge density on the sphere at  = 0 varies 

with , the distance of the point charge from the centre of the sphere. A quick uncritical 

look at equation 2.5.4 might give the quite wrong impression that when  = 1,  = 0, but 

this, of course, is quite wrong!  For  = 0, equation 2.5.4 becomes 
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 (   )       
       

(   )  
 

 

2.5.5 

where again  is in units of Q/(a

. 

 

That looks like this: 

 

 
FIGURE 11.4b 

 

 

  As   1,  i.e. as Q approaches the surface of the sphere, the surface charge density at  

= 0 approaches infinity.  That indeed would be so if there were truly such a thing as a 

mathematical point charge, for which Coulomb’s law avers that the electric field at the 

origin is infinite. A proton is a very small charge-bearing object.  If you assume it is a 

sphere and if you can find its radius in a book somewhere, it might be of interest to 

calculate the electric field at the surface of a proton.   What about an electron?  Is it a 

mathematical point? You’d have to ask a particle physicist. 

 

What is the total charge induced on the sphere? 

 

The area of an elemental zone of the sphere between  and   +  d is 2a
2
sin d and so 

the charge on such a zone is 
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 (    )   

       

(                 )  ⁄
  

 

2.5.6 

The total charge on the sphere is then the integral of this from  = 0 to , which is 

 

      .             

2.5.7 

 

That amount of electronic charge has been dragged out of the ground (earth).  We have 

argued that this charge must be uniformly distributed over the surface, thus contributing  

 

 
 

     
                                             2.5.8                  

 
to the overall surface charge density. 

 

 

 

  2.5b  The sphere is isolated 

 

     When the sphere is grounded, its surface charge density is given by equation 2.5.4.  To 

find the surface charge density when the sphere is isolated, we must subtract the 

expression 2.5.8 .  Thus the expression for the surface charge density when the sphere is 

isolated is 

 

         
 

    
[

       

(              )  ⁄
    

 

  
]   

2.5.9 

     

 

For  = 2, this looks like: 
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FIGURE 11.4c 

 

in which  is in units of  Q/(4a
2
). 

                                 

   To find the total charge on the isolated sphere we must, as before, mutiply this by the 

area of an elemental zone on the sphere, namely 2a
2
sin d and integrate 0 to .  This 

comes, of course, to zero. 

 

   The surface charge density is negative on a portion of the sphere facing the external 

point charge, and positive on the remainder of the sphere.  It changes sign (i.e. it is zero) 

where the square bracket in equatiom 2.5.9 is zero.  That is, where 

 

 

          
           (       )  ⁄    

  
 

2.5.10 

 

That is shown in figure II.4d.  The reader should ask him/herself if that makes physical 

sense and is about what one would expect. 
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FIGURE 11.4d 

 

   The sphere has developed a dipole moment, and it will be of interest to calculate the 

induced dipole moment as a funtion of  the distance of the external point charge.  The 

subject of dipole moments is dealt with in Chapter 3, and the reader may wish to read 

Chapter 3 before proceeding with the calculation in this instance. 

 

  Since the isolated sphere carries no net charge, the dipole moment is independent of the 

position of the origin of coordinates.   It will be convenient to take the origin to be at the 

centre of the sphere. 

 

  There are two methods of calculating the dipole moment. The first is the simple and 

straightforward method shown to me by Alain Charbonneau.  The second is the much 

more difficult and clumsy method initially adopted by myself.  It is gratifying that both 

give the same result! 

 

  The surface charge density over the surface of he isolated sphere varies with position 

over the surface of the sphere as given by equation 2.5.7, and as shown in figure II.4d for 

 = 2, although the total charge on the isolated sphere is zero.  We have seen that the 

electric field and potential outside the sphere can be calculated as if there were a point 

image charge Q/ at a distance  a/ from the centre of the sphere, plus a charge 

+Q/ distributed uniformly over the the surface.  That is, it can be calculated as if there 

were a point image charge Q/ at a distance  a/ from the centre of the sphere, plus a 
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point charge +Q/ at the centre of the sphere.  Thus we immediately see that the induced 

dipole moment of the isolated sphere is  Qa/
2
. 

 

  The clumsy effort that I initially used was to note that the surface charge density at 

angle  is given by equation 2.5.9.  The area of an elemental zone between  and   +  

d is            , so the total charge on such a zone is the product of these two 

expressions, and the moment of the charge on this zone is this product times the distance 

       of the zone from centre.  Integration of this long expression from   =  0 to 180° 

gratifyingly gives the same result Qa/
2
 as before. 

 

 

2.6   Two Semicylindrical Electrodes 

 

This section requires that the reader should be familiar with functions of a complex 

variable and conformal transformations.  For readers not familiar with these, this section 

can be skipped without prejudice to understanding following chapters.  For readers who 

are familiar, this is a nice example of conformal transformations to solve a physical 

problem. 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have two semicylindrical electrodes as shown in figure II.5.  The potential of the 

upper one is 0 and the potential of the lower one is V0.  We'll suppose the radius of the 

curcle is 1; or, what amounts to the same thing, we'll express coordinates x and y in units 

V  =  0 

V  =  V0 

x 

y 

FIGURE II.5 

O 
B 

A 
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of the radius.  Let us represent the position of any point whose coordinates are (x , y) by a 

complex number z = x + iy. 

 

Now let w = u + iv be a complex number related to z by ;
1

1














z

z
iw  that is, 

z
iw

iw






1

1
.  Substitute w = u + iv and z = x + iy in each of these equations, and equate 

real and imaginary parts, to obtain 

 

   u
y

x y

x y

x y


 


 

 

2

1

1

12 2

2 2

2 2( )
;

( )
;v    2.6.1 

 

   x
u

u
y

u

u


 

 


 

1

1

2

1

2 2

2 2 2 2

v

v v( )
;

( )
.   2.6.2 

  

 

In that case, the upper semicircle (V  =  0) in the xy-plane maps on to the positive u-axis 

in the uv-plane, and the lower semicircle (V  =  V0) in the xy-plane maps on to the 

negative u-axis in the uv-plane.  (Figure II.6.)  Points inside the circle bounded by the 

electrodes in the xy-plane map on to points above the u-axis in the uv-plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the uv-plane, the lines of force are semicircles, such as the one shown.  The potential 

goes from 0 at one end of the semicircle to V0 at the other, and so equation to the 

semicircular line of force is 

 

     
V

V

w

0


arg


     2.6.3  

B 

v 

u O 
A 

FIGURE  II.6 

V  =  V0 V  =  0 
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or     V
V

u 0 1


tan ( / ).v     2.6.4 

  

The equipotentials  (V = constant) are straight lines in the uv-plane of the form 

 

     v  =  fu.     2.6.5 

    

 

(You would prefer me to use the symbol m for the slope of the equipotentials, but in a 

moment you will be glad that I chose the symbol f.) 

 

If we now transform back to the xy-plane, we see that the equation to the lines of force is 

 

    ,
2

1
tan

22
10








 


 

y

yxV
V     2.6.6  

 

and the equation to the equipotentials is 

 

    1 22 2  x y fy ,     2.6.7 

or    x y fy2 2 2 1 0    .    2.6.8  

Now aren't you glad that I chose f ?  Those who are handy with conic sections (see 

Chapter 2 of Celestial Mechanics) will understand that the equipotentials in the xy-plane 

are circles of radii f 2 1 , whose centres are at (0 ,  f ), and which all pass through the 

points (1 , 0).  They are drawn as blue lines in figure II.7.    The lines of force are the 

orthogonal trajectories to these, and are of the form 

 

    x y gy2 2 2 1 0    .    2.6.9  

 

These are circles of radii g2 1  and have their centres at (0 ,  g).  They are shown as 

dashed red lines in figure II.7. 

 

 

  

 

FIGURE II.7 


