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 APPENDIX B 

Solutions to Miscellaneous Problems 
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By proportions,  
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Everything but x is known in this equation, which can therefore be solved for x.  There 

are several ways of solving it; here’s a suggestion.  If we put in the numbers, the equation 

becomes 
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Put X  =  100 −  x
2
, and the equation becomes 
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This can be written   ,01)(3)( =−+= BAXf  where A and B are obvious functions of  

X.  Differentiation with respect to X gives )()(' 33

2
3 BAXf +−=  and Newton-Raphson 

iteration  (X  =  X − f/f') soon gives X, from which it is then found that x =  6.326 182 m. 
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In the corotating frame the bob is in equilibrium under the action of three forces – its 

weight,  the tension in the string and the centrifugal force.  (If you don’t like rotating 

reference frames and centrifugal force, it will be easy for you to do it “properly”.)  

Resolve the forces perpendicular to the string:  ,sincos..sin 2

0 α=αΩα mgml and the 

problem is finished. 

  

 

3. (a) Raising or lowering the board doesn’t apply any torques to the system, so the 

angular momentum L is conserved.  That is, 

 

    ωθ= .sin 22mlL    is constant.   (1) 

 

We also have that  ..cos ωθ= lg      (2) 

 

i.  Eliminate ω from these equations.  This gives: 
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ii.  Eliminate l from equations (1) and (2).  This gives: 

 

    ,cot
2

23

L

mg
=θω      (4) 

 

which is constant. 

 

 

iii.  Eliminate θ from equations (1) and (2).  This gives: 

 

    .223
g

m

L
l =







 −ωω      (5) 

 

(Check the dimensions of all the equations.)  Then we can get L/m from equation (1) and 

hence   

     

    ( ) ,sin 222

0

23
gll =αΩ−ωω  

 

 

which is constant. 

 

 

(b)  i.          .m675023.0tansintansin 333

0

33 =αα=θθ ll  

 

Although we are asked to plot θ vertically versus l horizontally, it is easier, when 

working out numerical values, to calculate l as a function of θ.   That is, 

 

    .
tansin

142287.0
3 θθ

=l  

 

(The number in the numerator is the cube root of 0.023675.) 
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For l = 40 cm = 0.4 m, the semivertical angle is given by 

 

   .923369.0tansin3 =θθ  

 

The solution to this is          .'3145o=θ  

 

(See section 1.4 of Celestial Mechanics if you need to know how to solve the equation 

f(x) = 0.) 

 

 

(b)  ii.   .cotcot 2323 αΩ=θω  

 

With the given data, this is .tan385.199 23 θ=ω  
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(b)  iii.  ( ) ( ) .cossinsin 22

0

422

0

2

0

322

0

23 αΩ=αΩ−ΩΩ=αΩ−ωω lllll  

 

That is, ( ) ,223 gal =−ωω  where, with the given initial data,  

 

  a  =  0.48168 m
2
 s

−1
  and  g

2
  =  96.04  m

2
 s

−4
 . 
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Although we are asked to plot ω vertically versus l horizontally, it is easier, when 

working out numerical values, to calculate l as a function of ω.   That is, 
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To solve the above equation for ω might be slightly easier with the substitution of  u for 

1/ω: 

 

    .0242 =−+ lauug  

 

With l = 0.6 m, this gives u = 0.226121 rad
−1

 s, and hence ω =  4.422 rad s
−1

.  As in part 

(b) i, it is necessary to know how to solve the equation f(x) = 0.  See section 1.4 of 

Celestial Mechanics if you need to know how. 
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4.   There are no horizontal forces, because the table is smooth.  Therefore the centre of 

mass of the rod falls vertically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From energy considerations 

 

   ( ) .constant22

3
1

2
12

2
1 =+θ+ mgymlym &&     (1) 

 

But θ= cosly   and therefore ..sin θθ−= && ly  

 

â   .cos6)1sin3( 22 Cgl =θ+θ+θ &     (2) 

 

Initially .6,0 gC =∴=θ=θ &  

 

â   .
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)cos1(6
2

2

+θ
θ−
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l

g
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Also, since ,cosandsin 22222222 θθ=θθ= &&&& lxly  

 

we obtain  
1sin3

)cos1(sin6
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and   .
1sin3

)cos1(cos6
2

2
2

+θ
θ−θ

=
gl

x&      (5) 

 

 

Of course y&& andθ  increase monotonically with θ; but x& starts and finishes at zero, and 

must go through a maximum.  With c  =   cos θ, equation (5) can be written 

  

    

   ,
34

)1(6
2

2

c

cglc
x

−
−

=&       (6) 

 

and by differentiating 2
x&  with respect to c, we see that 2

x&  is greatest at an angle θ given 

by 

 

   ,08123 3 =+− cc       (7) 

 

the solution of which is  .'5037o=θ  

 

If the length of the rod is 1 m (l = 0.5 m) and x&  = 1 m s
−1

, equation (6) becomes 

 

   ,044.294.26 2 =+− cc      (8) 

 

and the two solutions are  .'5280and'1517 oo=θ  

 

The reader who has done all the problems so far will be aware of the importance of being 

able instantly to solve the equation f(x) = 0.  If you have not already done so, you should 

write a computer or calculator program that enables you to do this instantly and at a 

moment’s notice.  See section 1.4 of Celestial Mechanics if you need to know how. 

 

If you want to find the normal reaction N of the table on the lower end of the rod, you 

could maybe start with the vertical equation of motion  .mgNym −=&&   Differentiate 

equation (4):  =yy &&&2 whatever, and the use equation (4) again for y& .  This looks like 

rather heavy and uninteresting algebra to me, so I shan’t pursue it.  There may be a better 

way... 
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5.   In the figure below I have marked in red the forces on the rod, namely its weight mg 

and the horizontal and vertical components X and Y of the reaction of the hinge on the 

rod.  I have also marked, in green, the transverse and radial components of the 

acceleration of the centre of mass.  The transverse component is θ&&l  and the radial 

component is the centripetal acceleration .2θ&l  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From consideration of the moment of the force mg about the lower end of the rod, it is 

evident that the angular acceleration is 

 

    ,
4

sin3

l

g θ
=θ&&      (1) 

 

and by writing θθθθ dd /as &&&&  and integrating (with initial conditions 0=θ=θ & ), or from 

energy considerations, we obtain the angular speed: 

 

    .
2

)cos1(32

l

g θ−
=θ&      (2) 

 

The horizontal and vertical equations of motion are: 

 

   )sincos( 2 θθ−θθ= &&&mlX      (3) 

 

and   ).cossin( 2 θθ+θθ=− &&&mlYmg     (4) 

 

(As ever, check the dimensions - and count the dots!) 
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After substitution for 2and θθ &&&  we find 

 

    )2cos3(sin
4
3 −θθ= mgX     (5) 

 

and    .)cos31( 2

4
1 θ−= mgY     (6) 

 

The results follow immediately. 

 

 

 

 

6.   Call the length of the rod 2l.  Initially the height above the table of its centre of mass 

is l cos 40ο, and its gravitational potential energy is mg l cos 40ο.   When it hits the table 

at angular speed ω, its kinetic energy is ( ) .22

3
222

3
4

2
12

2
1 ω=ω=ω mlmlI    Therefore,  

 

  .sdeg9.271srad746.4
2
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−− ===ω
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To find the time taken, you can use equation 9.2.10: 
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Here, θ=θ== cos)(,40cos, o2

3
4 mglVmglEmlI and therefore 
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cos40cos
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90
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d
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l
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The magnitude of the quantity before the integral sign is 0.184428 s.  To find the value of 

the integral requires either that you be an expert in elliptic integrals or (more likely and 

more useful) that you know how to integrate numerically (see Celestial Mechanics 1.2.)   

I make the value of the integral 2.187314, so that the time taken is 0.4034 seconds.  

When integrating, note that the value of the integrand is infinite at the lower limit.  How 

to deal with this difficulty is dealt with in Celestial Mechanics 1.2.  It cannot be glossed 

over. 
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7.   Here is the diagram.  The forces are the weight mg of the rod, and the force of the 

table on the rod.  However, I have resolved the latter into two components – the normal 

reaction N of the table on the rod, and the frictional force F, which may be either to the 

left or the right, depending on whether rod is tending to slip towards the right or the left.  

The magnitude of F is less than µN as long as the rod is not jus about the slip.  When the 

rod is just about to slip, F = µN,  µ being the coefficient of limiting static friction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Just as in Problem 5, the equations of motion, as long as the rod does not slip, are 

 

    )2cos3(sin
4
3 −θθ= mgF     (1) 

 

and     .)cos31( 2

4
1 θ−= mgN     (2)  

 

â    .
)cos31(

)2cos3(sin3
2θ−
−θθ

=
N

F
    (3) 

 

The figure below shows F/N as a function of θ.  One sees that, as the rod falls over, F/N 

increases, and, as soon as it attains a value of µ, the rod will slip.  We see, however, that 

F/N reaches a maximum value, and by calculus we can determine that it reaches a 

maximum value of  3706.0128/1015 =  when '.0635)(cos o

11
91 ==θ −   If  µ <  

0.3706, the bottom of the rod will slip before '.0635o=θ   If, however, µ > 0.3706, the 

rod will not have slipped by the time ,'0635o=θ  and it is safe for a while as F/N starts 

to decrease.  When θ reaches '1148)(cos o

3
21 =− , the frictional force changes sign and 

thereafter acts to the left.  (The frictional force of the table on the rod acts to the left;  the 

mg N 

F 

θ 
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frictional force of the rod on the table acts to the right.)  We know by now (since the rod 

survived slipping before ,'0635o=θ  that the magnitude of F/N can be at least as large  
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as 0.3706, and it doesn’t reach this until '.1551o=θ   Therefore, if the rod hasn’t slipped 

by ,'0635o=θ  it won’t slip  before '.1551o=θ   But after that it is in danger again of 

slipping.  F/N becomes infinite (N = 0) when ,'3270)(cos o

3
11 ==θ −  so it will certainly 

slip (to the right) before then. 

 

If  µ  =  0.25, the rod will slip to the left when   

 

  .'3919or,
4

1

)cos31(

)2cos3(sin3 o

2
=θ=

θ−
−θθ

  

 

If  µ  =  0.75, the rod will slip to the right when   

 

  .'0753or,
4

3

)cos31(

)2cos3(sin3 o

2
=θ−=

θ−
−θθ

 

 

Again, it is very necessary that you prepare for yourself a program that will instantly 

solve the equation f(x) = 0. 
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8.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let the length of the ladder be 2l.  By geometry, the distance OC remains equal to l 

throughout the motion;  therefore C describes a circle of radius l, centre O.  I have 

marked in, in green, the radial and transverse components of the acceleration of C, 

namely .and2 θθ &&& ll   The angular speed of the ladder is θ&  and the linear speed of the 

centre of mass C is .θ&l    I have also marked, in red, the three forces acting on the ladder, 

namely its weight and the reactions of the floor and the wall on the ladder. 

 

The angular speed θ&  can be obtained from energy considerations.  That is, the loss of 

potential energy in going from angle α to the vertical to angle θ is equal to the gain in 

translational and  rotational kinetic energies: 

 

   .)()()cos(cos 22

2
1

2
12

2
1 θ+θ=θ−α && mllmmgl   

 

â          .)cos(cos
2

32 θ−α=θ
l

g
&     (1) 
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The angular acceleration θ&&  can be obtained from the following equation: 

 

    .sin 2

3
4 θ=θ &&mlmgl      (2) 

 

The derivation of equation (2) raises some points of interest, and I discuss it in an 

Appendix at the end of the problem. 

 

The vertical and horizontal equations of motion are: 

 

   )sincos( 2

2 θθ−θθ= &&& llmN      (3) 

 

and   ,)cossin( 2

1 θθ+θθ=− &&& llmNmg     (4) 

 

although we need only the first of these, because we wish to find out when N2  =  0. 

 

On substitution for 2and θθ &&&  we find that 

 

   )cos2cos3(sin
4
3

2 α−θθ= mgN     (5) 

 

and   .)cos9coscos61( 2

4
1

1 θ+θα−= mgN    (6) 

 

We need only the first of these to see that N2 becomes zero (and hence the upper end 

loses contact with the wall) when .coscos
3
2 α=θ  

 

Appendix:  Derivation of equation (2). 

 

In my original posting of this solution I had derived equation (2) by considering that the 

total moment of all forces about Q is mgl sin θ ,  and the rotational inertia with respect to 

Q is .2

3
4 ml   I then equated mgl sin θ  to .2

3
4 θ&&ml   I am indebted to correspondent Amin 

Rezaee Zadeh for pointing out a flaw in this argument, and for supplying a correct 

derivation.  The flaw is that I am applying the equation L&=ττττ to a moving point Q.   In 

Section 3.12 of Chapter 3 of these notes it is pointed out that L&=ττττ  can be applied to a 

moving point only if the moving point satisfies one or more of three conditions, and it is 

evident in this problem that Q satisfies none of these conditions.  I present Mr Rezaee’s 

correct derivation of equation (2) below.   

 

I shall be making use of equations 3.12.1 and 3.12.2: 

 

    .' QQQQ rrL &&& ×+= Mττττ     3.12.1 

 

   ( ) ( )[ ].QQQ vvrrL −×−= ∑ iii m     3.12.2 
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I shall also be making use of the notation used in Section 3.12, and I reproduce here 

figure III.7 from that Section, and I also draw the relevant vectors appropriate to this 

ladder problem. 
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In the figure below, I have indicated an elemental portion ds of the ladder at a distance s 

from the upper end of the ladder.  Its mass is evidently .
2l

mds
dm =   I have drawn the 

position vectors ri and rQ of ds and of Q.  This notation corresponds to the same notation 

used in Section 3.12.   From the geometry of the figure, we can determine that 

 

   jir θ−+θ= cos)2(sin slsi     (A1) 

 

and   ,cos2sin2Q jir θ+θ= ll      (A2) 

 

where i  and  j  are the unit vectors in the x- and y- directions respectively. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On differentiation with respect to time, we find the following expressions for the 

velocities of the element ds and the point Q, in which I again retain the notation used in 

Section 3.12: 

 

   jiv θθ−−θθ= sin)2(cos && slsi     (A3) 

 

and   .sin2cos2Q jiv θθ−θθ= && ll     (A4) 
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On making use of equation 3.12.2, we obtain for the angular momentum of the element 

ds with respect to Q: 

 

( ) ( )[ ] .
2

QQQ ds
l

m
d ii vvrrL −×−=    (A5) 

 

The instantaneous angular momentum of the entire ladder about Q is therefore  

  

   ( ) ( )[ ] .
2

2

0
QQQ ∫ −×−=

l

ii ds
l

m
vvrrL    (A6) 

 

On substitution of equations (A1) – (A4) into equation (A6) and a modest amount of 

algebra, we obtain 

 

   ,)2(
2

2

3
2

2

0
Q k

k
L θ−=−

θ
= ∫ &

&

mldslss
l

m l

   (A7) 

 

where k is the unit vector in the z-direction.  (The z-direction is out of the plane of the 

“paper”, and therefore LQ is into the plane of the “paper”.  It is worth spending a moment 

or two trying to imagine this.  The ladder is rotating counterclockwise about C, while C 

and Q are moving in clockwise trajectories.  It may not be immediately obvious to decide 

whether one would expect LQ to be directed into or out of the plane of the “paper”.  

Equation (A7) answers this question.) 

 

We now make use of equation 3.12.1: 

 

 .' QQQQ rrL &&& ×+= mττττ     (A8) 

 

Let us find expressions for the four vector quantities in this equation.    

By differentiation of equation (A7) with respect to time, we obtain 

 

    .2

3
2

Q kL θ−= &&& ml      (A9) 

 

The torque about Q is 

 

    .sinQ kτ θ= mgl      (A10) 

 

We can see from the geometry of the figure (see especially the second of our figures, in 

which we see that Q'r  and r are the same in magnitude and direction) that 

 

    .cossin'Q jir θ+θ= ll     (A11) 
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Finally, by differentiation of equation (A4) (in which QQ rv &= ), we obtain 

 

].)cossin()sincos[(2 22

Q jir θθ+θθ−θθ−θθ= &&&&&&&& l   (A12) 

 

 

Substitution of equations (A9) to (A12) into equation (A8) gives, after some algebra, 

 

   .sin 2

3
4 θ=θ &&mlmgl       (A13) 

 

This is equation (2), quod erat demonstrandum.   

 

     

 

 

 

9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It will, I think, be agreed that the point O remains fixed in space as long as the 

semicylinder remains in contact with wall and floor.  Therefore the centre of mass C 

moves in a circle around O.  We’ll call the radius of the circle, which is the distance 

mg 

2θ&b
mg 

θ&&b  

N1 

θ 
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C 

N2 
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between O and C, b, which, for a semicylinder, equals 4a/(3π) (see Chapter 1), where a is 

the radius of the semicylinder.  I have marked, in red, the three forces on the 

semicylinder, and also, in green, the radial and transverse components of the acceleration. 

 

The angular speed θ&  can be obtained from energy considerations.   The gain in kinetic 

energy in going from rest to an angular speed θ&  is ,)( 22

2
1 θ&mk  and the gain in potential 

energy when the centre of mass drops through a vertical distance b sin θ is .sin θmgb   

Here k is the radius of gyration about O, which, for a semicylinder, is given by 

.2

2
12

ak =    

 

[I have left b  and k as they are in the equations, so that the analysis could easily be 

adapted, if needed, for a hollow semicylinder, or a solid hemisphere, or a hollow 

hemisphere.  From Chapters 1 and 2 we recall: 

 

 Solid semicylinder:  
22
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2
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4

π
==

π
=

k

b
ak

a
b   

 

 Hollow semicylinder:  
22

2
22 42

π
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π
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k

b
ak

a
b  

 

 Solid hemisphere:  
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 Hollow hemisphere:  ]
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b
akab  

 

   

On equating the gain in kinetic energy to the loss in potential energy, we obtain 

   

          .sin
2

2

2 θ=θ
k

bg
&      (1) 

 

The angular acceleration θ&&  can be obtained from applying θ=τ &&I about O: 

 

    ,cos 2θ=θ &&mkmgb   

 

from which    .cos
2

θ=θ
k

bg
&&       (2) 

  
The horizontal and vertical equations of motion are 

 

   )sincos( 2

2 θθ+θθ= &&&mbN      (3) 
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and   .)cossin( 2

1 θθ−θθ=− &&&mbmgN     (4) 

 

We don’t really need equation (4), because we are trying to determine when N2 = 0. 

 

On substitution from equations (1) and (2), equation (3) becomes 

 

   .cossin
6

2

2

1 θθ=
a

gmb
N      (5) 

 

This is zero when θ  =  0
o
  (which was the initial condition) or when θ = 90

o
, at which 

point contact with the wall is lost, which it was required to show. 

 

At this instant, the rotational velocity  is 
2

2

k

bg
counterclockwise. 

 

and the linear velocity of C is b
2

2

k

bg
 horizontally to the right. 

 

The rotational kinetic energy is ,2

2
1 ωI  where ω = 

2

2

k

bg
, and I is the rotational inertia 

about the centre of mass, which is .)( 22 bkm −  

 

â    .
)(

2

22

rot
k

bkmbg
K

−
=  

 

The translational kinetic energy is ,2

2
1 vm where v  =  

2

2

k

bg
. 

 

â    .
2

3

tr
k

gmb
K =  

 

The sum of these is mbg ,  which is just equal to the loss of the original potential energy, 

which serves as a check on the correctness of our algebra. 

 

There are now no horizontal forces, so the horizontal component of the velocity of C 

remains constant. The semicylinder continues to rotate, however, until the rotational 

kinetic energy is converted to potential energy and C rises to its maximum height.  If the 

base then makes an angle φ with the vertical, the gain in potential energy is mbg sin 

φ, and equating this to the rotational kinetic energy gives 

   ./1sin 22 kb−=φ  
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This gives the following results: 

 

 Solid semicylinder:  φ  =   39
o
  46'  

 

 Hollow semicylinder:  φ  =   36
o
  30' 

 

 Solid hemisphere:  φ  =   40
o
  25' 

 

 Hollow hemisphere:  φ  =   38
o
  41' 

 

 

 

 

 

 

 

 

10.    

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is well known that if µ>α −1tan the particle will slide down the plane unless helped by 

an extra force. I have drawn the three forces acting on the particle.  Its weight mg.  The 

reaction R of the plane on the particle; if the particle is in limiting static equilibrium, this 

reaction will make an angle λ (“the angle of friction”) with the plane such that tan λ  =  µ.  

It therefore makes an angle α − θ with the vertical.  Finally, the additional force P 

needed; we do not initially know the direction of this force. 

 

When three (or more) coplanar forces are in equilibrium and are drawn head-to-tail, they 

form a closed triangle (polygon). I draw the triangle of forces below. 
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P 

mg 
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It will be clear from the triangle that P is least when the angle between P and R is 90
o
: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The least value of P is therefore .)sincoscos(sin λα−λαmg   But µ=λtan  and 

therefore 
22 1

1
cosand

1
sin

µ+
=λ

µ+

µ
=λ   . 

 

â    ,
1

)cos(sin

2
min

µ−

αµ−α
=

mg
P  

 

and P then makes an angle λ with the plane. 
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mg 

α − λ 
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mg 

α − λ 
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You may, if you wish, go further, and show that when P makes an angle β with the plane, 

it must have magnitude 

 

.
cossin

cossin
mgP

β+βµ
αµ−α

=  

 

You can then differentiate this with respect to β  (you need only differentiate the 

denominator) and show that this is a minimum when β = λ.  That is just a harder way of 

finding what we already found by using the triangle of forces. 

 

For α = 70º  and µ = 0.8,  P varies with β like this: 
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This goes through a minimum of Pmin = 0.520mg at 7.388.0tan o1 ==β − . 
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11.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the cylinder rolls down the plane, the wedge, because its base is smooth, will slide 

towards the left.  Since there are no external horizontal forces on the system, the centre of 

mass of the system will not move horizontally (or, rather, it won’t accelerate 

horizontally.) 

 

As usual, we draw a large diagram, using a ruler , and we mark in the forces in red and 

the accelerations in green, after which we’ll apply F = ma to the cylinder, or to the 

wedge, or to the system as a whole, in two directions.  It should be easy and 

straightforward. 

 

I have drawn the linear acceleration s&&  of the cylinder down the slope, and its angular 

acceleration θ&& .  I have drawn the linear acceleration x&&  of the wedge, which is also 

shared with the cylinder.   I have drawn the gravitational force mg on the cylinder.  There 

is one more force on the cylinder, namely the reaction of the wedge on the cylinder.  But 

I’m not sure in which direction to draw it.  Is it normal to the plane?  That would mean   

there is no frictional force between the cylinder and the plane.  Is that correct 

(remembering that both the cylinder and the wedge are accelerating)?  Of course I could 

calculate the moment of the force mg about the point of contact of the cylinder with the 

plane, and then I wouldn’t need to concern myself with any forces at that point of contact.  

But then that point of contact is not fixed.  Oh, dear, I’m getting rather muddled and 

unsure of  myself.  

 

x 

s 

    m,  a 
2mkI =  

M 

mg 

s&&  

x&&  

x&&  

as /&&&& =θ  



 24 

This problem, in fact, is ideally suited to a lagrangian rather than a newtonian treatment, 

and that is what we shall do.  Lagrange proudly asserted that it was not necessary to draw 

any diagrams in mechanics, because it could all be done analytically.   We are not quite 

so talented as Lagrange, however, so we still need a large diagram drawn with a ruler.  

But, instead of marking in the forces and accelerations in red and green, we mark in the 

velocities in blue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No frictional or other nonconservative forces do any work, so we can use Lagrange’s 

equations of motion for a conservative holonomic system;  .
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The speed of the wedge is x&  and the speed of the centre of mass of the cylinder is 

,cos222 α−+ xsxs &&&&  and the angular speed of the cylinder is ./as&  

 

The kinetic energy of the system is 

 

  ,)()cos2( 2

2
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2
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2
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or  ,)(cos1 2
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1 xMmxsms
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and the potential energy is 

 

  .sinconstant α−= mgsV  

x 

s 

    m,  a 
2mkI =  

M 

mg 

s&  

x&  

x&  

as /&& =θ  
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Application of Lagrange’s equation to the coordinate x gives us 

 

 

xMmsm &&&& )(cos +=α  

 

and application of Lagrange’s equation to the coordinate s gives us 

 

.sincos1
2

2

α+α=







+ gxs

a

k
&&&&  

 

Elimination of s&&  from these two equations gives us 
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You can also easily find an expression for s&&  is you wish. 
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There is no acceleration normal to the plane, and therefore  .cosα= mgN   The frictional 

force F acts along the tangent to the path and is equal to µN, or µmg cos α, where µ is the 

coefficient of moving friction.  We are told to ignore the difference between the 

coefficients of moving and limiting static friction.  Since the particle was originally at 

rest in limiting static friction, we must have µ  =  tan α.  Therefore F  =  mgsin α . The 

tangential equation of motion is 

 

+−= Fsm &&   whatever the component of mg  is in the tangential direction in the sloping               

plane.  

 

The component of mg down the plane would be (look at the left hand drawing) mg sin 

α, and so its tangential component (look at the right hand drawing) is .sinsin ψαmg   So 

we have, for the tangential equation of motion, 

 

   ,sinsinsin ψα+α−= mgmgsm &&  

 

or   ).sin1(sin ψ−α−= gs&&   

 

We are seeking a relation between V and ψ, so, in the now familiar fashion, we write 

s
ds

Vd
V &&for  , so the tangential equation of motion is 

 

N 

* 

mg 

F s 
ψ 

α 
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   ).sin1(sin ψ−α−= g
ds

dV
V      (1) 

 

We also need the equation of motion normal to the trajectory.  The component of mg in 

that direction is ψα cossinmg , and so the normal equation of motion is 

 

   .cossin
2

ψα=
ρ

mg
mV

 

 

Here ρ is the radius of curvature of the path, which is the reciprocal of the curvature 

./ ψdds   The normal equation of motion is therefore 

 

   .cossin2 ψα=
ψ

g
ds

d
V      (2) 

 

Divide equation (1) by equation (2) to eliminate s and thus get a desired differential 

equation between V and ψ: 

 

   .
cos

)sin1(1

ψ
ψ−

−=
ψd

dV

V
     (3) 

 

This is easily integrated; a convenient (not the only) way is to multiply top and bottom by 

1 + sin ψ.  In any case we soon arrive at  

   ,constant )sin1ln(ln +ψ+−=V     (4) 

 

and with the initial condition V  =  V0 when ψ  =  0, this becomes 

 

   .
sin1

0

ψ+
=

V
V       (5) 

 

In the limit, as ψ  →  90ο,  .02
1 VV →   The particle is then moving at constant velocity 

and is in equilibrium under the forces acting upon it just when it was initially at rest. 
 

 

 

13.   M1  =  mass of complete sphere of radius a. 

       M2    =   mass of missing inner sphere of radius xa. 

       M    =    mass of given hollow sphere. 

 

We have           ,/and 3

1212 xMMMMM =−=       and therefore  
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Also   ).( 2

21

2

5
222

25
22

15
2 xMMaaxMaMI −=−=  

 

Hence  .
1

1
3

5
2

5
2

x

x
MaI

−
−

×=         

        

 

If x =  0, I  =  ,2

5
2 Ma  as expected.  If  x →  1, you may have to use de l’Hôpital’s rule to 

show that I  →  ,2

3
2 Ma  as expected. 

 

 

14.   M1  =   mass of mantle. 

       M2    =   mass of core 

         M    =   mass of entire planet. 

 

We have  ,
)1(

and
3

3

2

1
21

x

xs

M

M
MMM

−
=+=  and therefore 

 

.
)1(

)1(
and

)1( 33

3

133

3

2
xsx

xs
MM

xsx

x
MM

−+
−

×=
−+

×=  

 

 

Also  ,
1

1
3

5
2

15
222

25
2

mantlecore
x

x
aMaxMIII

−
−

×+=+=  

 

where I have made use of the result from the previous problem.  On substitution of the 

expressions for M1 and M2, we quickly obtain 

    

   .
)1(

)1(
3

5
2

5
2

xss

xss
MaI

−+
−+

×=      (1) 

 

A hollow planet would correspond to 1/s = 0.  Divide top and bottom by s and it is 

immediately seen that the expression for a hollow planet would be identical to the 

expression obtained for the previous problem. 
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Note that both x = 0  and x = 1 correspond to a uniform sphere, so that in either case, 

;2

5
2 MaI =  for all other cases, the moment of inertia is less than .2

5
2 Ma  

 

The core size for minimum moment of inertia is easily found by differentiation of the 

above expression for I, and the required expression follows after some algebra.  For s = 

0.6, the equation becomes ,04159 52 =−− xx  of which the only positive real root is 

,382736.0=x  which corresponds to a moment of inertia of 0.90376 % .2

5
2 Ma   Note 

that. for s = 0.6, the moment of inertia, expressed in units of  ,2

5
2 Ma   varies very little as 

the core size goes from 0 to 1, so that measurement of the moment of inertia places very 

little restriction on the possible core size. 

 

The inverse of equation (1) is 

 

   ,0)1()1()1( 35 =−+−−− sIxsIxs    (2) 

 

where I is expressed in units of  .2

5
2 Ma   For I  =   0.911, there are two positive real roots 

(look at the graph); they are x =  0.64753  and 0.81523.  For I  =  0.929, the roots are 

0.55589 and 0.87863.  Thus the core size could be anything between 0.55589 and 

0.64753 or between 0.81523 and 0.87863 a rather large range of uncertainty.  Even if I 

were known exactly (which does not happen in science), there would be two solutions for 

x. 
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15.  This is just a matter of geometry.  If, when you make a small angular displacement, 

you raise the centre of mass of the brick the equilibrium is stable.  For, while the brick is 

in its vertical position, it is evidently at a potential minimum, and you have to do work to 

raise the centre of mass.  If, on the other hand, your action in making a small angular 

displacement results in a lowering of the centre of mass, the equilibrium is unstable. 

 

When the brick is in its vertical position, the height h0 of its centre of mass above the 

base of the semicylinder is just 

 

     .0 lRh +=  

 

When it is displaced from the vertical by an angle θ, the point of contact between brick 

and semicylinder is displaced by a distance Rθ, and, by inspection of the drawing, the 

new height h is 

 

   .cossincos θ+θθ+θ= lRRh      

 

∴   .)cos1)((sin0 θ−+−θθ=− lRRhh  

 

If you Maclaurin expand this as far as θ2
, you arrive at 

 

   .)( 2

2
1

0 θ−≈− lRhh  

 

This is positive, and therefore the equilibrium is stable, if l  <  R , or 2l  <  2R , i.e. if the 

length of the brick is less than the diameter of the semicylinder. 
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16.   As in the previous question, it is just a matter of geometry.  If rolling the Thing 

results in raising its centre of mass, the equilibrium is stable.  Initially, the height of the 

centre of mass is h0  =  b +  l. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After rolling, the dashed line, which joins the centres and is of length a + b, makes an 

angle θ with the vertical.  The short line joining the centre of mass of the Thing to the 

centre of curvature of its bottom is of length l − a and it makes an angle θ + φ with the 

vertical.  The height of the centre of mass is therefore now 

 

    .)cos()(cos)( φ+θ−+θ+= albah  

 

The centre of mass has therefore rise through a height 

 

   .)cos()(cos)(0 lbalbahh −−φ+θ−+θ+=−  

 

Also, the two angles are related by aφ  =  bθ,  so that 

 

    

  .])}/(1cos[{)(cos)(0 lbabalbahh −−θ+−+θ+=−  

 

Maclaurin expand the cosines to θ2
 and you should get 

 

  .])/1)(([ 22

2
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For stability this must be positive, and hence .
111

bal
+>  

 

 

 

If a = b, this becomes .
2
1 al <  

 

For a hollow semicylinder, .363.0)/21( aal =π−=       â Stable 

 

For a hollow hemisphere,   .5.0 al =            â  Borderline stable 

 

For a solid semicylinder,    .576.0)]3(/41[ aal =π−=   â  Unstable 

 

For a solid hemisphere,      .625.0
8
5 aal ==          â  Unstable 

  

 

 

 17.   We need to find the height h of the centre of mass above the level of the pegs as a 

function of θ .  See drawing on next page. 

 

Angles: BAC  =   45
o
 −  θ 

  ΑΒΧ  =   45
o
 +  θ   

 
Distances: AB  =  2ka 

  AC  =  2ka cos (45
o
 −  θ) 

  EF   =  2ka cos (45
o
 −  θ) cos (45

o
 +  θ)  =  ak cos 2θ 

  DC  =  2a  

  DF  =  θcos2a   

  h  =   DF  −  EF   =   )2coscos2( θ−θ ka  

                        h0 = height of centre of mass above pegs when θ  =  0
o
  =  )2( ka −  

  
k

k

h

h
y

−

θ−θ
==

2

2coscos2

0

 

 

dy/dθ will show that maxima and minima of y ( and of the potential energy), and hence 

equilibria, occur for θ = 0
o
 and for ,)8/(1cos k=θ  which is possible only if .8/1>k  

A second differentiation, or a graph of h versus θ, will show which extrema are maxima 

and which are minima.  In particular the second derivative at θ  =  0
o
 is zero for 

.354.08/1 ==k  I draw below graphs of  y : θ or of h/a : θ for several k, and also a 

graph of  the unstable equilibrium θ versus k for the range .500.0354.0 ≤≤ k   If k = 

0.45, θ = ! 38º.2. 
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The right-hand drawing is a position of equilibrium, but it is unstable.  What happens if it 

tips counterclockwise?   What happens if it tips clockwise? 
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18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three forces acting on the hemisphere:  Its weight mg.  The reaction N of the 

wall, which is perpendicular to the wall since the wall is smooth.  The reaction R of the  

floor, which acts at an angle λ to the floor, where µ  =  tan λ.  Three forces in equilibrium 

must act through a point; therefore all three forces act through the point P.  It is thus clear 

that 

    .
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8
3

µ
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µ
==θ

a
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If '.4841, o

4
1 =θ=µ   If .90, o

8
3 =θ=µ    If ,

8
3>µ the hemisphere can rest in any 

position, the equilibrium not being limiting static equilibrium. 
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19. 

 

    This solution uses the same method that Professor Marsh (Warwick University) 

showed me for Problem 20.  I believe it to be clearer than an earlier solution that I had 

posted. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   At an instant when the rod is tilted at angle θ, the coordinates of C with respect to the 

fixed point O are: 

 

    ),cos(sin θθ−θ= ax     (1) 

 

    ),sin(cos θθ+θ= ay     (2) 

 

and so its velocity components are  

 

θθθ= && sinax      (3) 

 

and    .cos θθθ= && ay      (4) 

 

   The moment of inertia of the rod about the centre of mass is .2

3
1 ml  

 

aθ 
P 

θ 

C 

 

O 
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    The kinetic energy T is the sum of the translational kinetic energy and the rotational 

kinetic energy about the centre of mass: 

 

,)( 22

6
122

2
1 θ+θ= &mlaT     (5) 

and the potential energy V is 

 

).sin(cos θθ+θ= mgaV     (6) 

 

   One can now get the equation of motion either by Lagrangian means or by equating the 

derivative with respect to θ of the total energy to zero, since there are no nonconservative 

forces and hence the total energy is independent of θ.  In carrying out the differentiation,  

note that .222 θ=
θ
θ

θ=θ
θ

&&
&

&&

d

d

d

d
  We obtain, for the equation of motion: 

 

.0cos)( 2

3
12222 =θθ+θ+θ+θθ galaa &&&    (7) 

 

   For small θ (neglecting second and higher powers of θ),  1cos →θ  and 22θa  is 

negligible compared with l
2
 , so the equation of motion becomes, approximately, 

 

2
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l

ga
−=θ&& , and so the period is .
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20. 

 

   I am much indebted to Professor T. R. Marsh of Warwick University not only for 

finding a mistake in an earlier posted solution to this problem, but for providing the 

following  solution.    

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   .)cos(
4
3

5
72 θ−= maI      (2) 

 

    
8

3 θ
=

a
x        

 

 

 

   We are going to refer the motion to a fixed point Q, which is the point of contact 

between hemisphere and table when the hemisphere is in its equilibrium position. 

 

   At an instant when the hemisphere is tilted at an angle θ, the distance between A and Q 

is aθ, and the coordinates of C relative to Q are   

 

θ−θ= sin
8
3 aax ,     (1) 

 

θ−= cos
8
3 aay .     (2) 

 

   Therefore the velocity components of C are 

 

aθ Q 
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    θθ−= && )cos1(
8
3ax  ,    (3) 

 

    .sin
8
3 θθ= && ay      (4) 

 

   By the parallel axes theorem, the moment of inertia around the centre of mass is 

 

      .)( 2

320
832

8
32

5
2 maammaI =−=     (5) 

 

The kinetic energy T is the sum of the translational kinetic energy and the rotational 

kinetic energy about the centre of mass: 

 

    ( ) ( ) ( ) .cos
320

83
sincos1 2

8
3

10
7222

8
32

8
32

2
1 θθ−=θ




 +θ+θ−= && mamaT  (6) 

 

   The potential energy V is  

 

            ).cos1(
8
3 θ−= mgaV      (7) 

 

   We can the get the equation of motion either by using the Lagrangian equations, or by 

calculating the derivative with respect to θ of the total energy T  +  V.   The derivative is 

zero, because there are no nonconservative forces and total energy is constant.  Note that 

(as in Problem 19) the derivative of 2θ&  with respect to θ is 
θ
θ

θ
d

d&
&2 , which is θ&&2 .   Either 

method results in the equation of  motion: 

 

( ) .0sinsincos
8
32

8
3

4
3

5
7 =θ+θθ+θθ− g&&&     (8) 

 

   In the small angle limit, θ→θ→θ sinand1cos , and 2θ& is negligible compared with 

g, so the equation of motion becomes 

 

,
26

15
θ−=θ

a

g
&&       (9) 
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21.         The (second) moment of inertia with respect to the centre (see Section 2.19 of 

Chapter 2) is 

          .)/(4I 5

015
25

0

4

0centre adrarr
a

ρπ=−ρπ= ∫  

  

         The moment of inertia with respect to an axis through the centre is 2/3 of this: 

 

             .5

045
4

axis aI πρ=  

 

∴         .2
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22.                                             
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mgN
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2 )cos(
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mgN
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Left-hand particle:    .)]sin()cos([ θ−α+θ−αµ= mgT  

 

Right-hand particle:  .)]cos()[sin( θ+αµ−θ+α= mgT  

 

∴ ),sin()sin()]cos()[cos( θ−α−θ+α=θ+α+θ−αµ   

 

and, by the “sum and difference” trigonometrical formulae, we obtain 

 

   ,sincos2coscos2 θα=θαµ  

 

from which   .tan µ=θ  
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23.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a portion of the rope between θ and δθ.  There are four forces on this portion.  

The tension T at θ.  The tension T  +  δT  at θ  +  δθ  (δT is negative).  The normal 

reaction δN of the cylinder on the rope.  The frictional force µδN of the cylinder on the 

rope.  Note that the rope is about to slip downwards, so the friction force is upwards as 

shown.  

 

We have   )sin()2(
2
1 θδ+=δ TTN  

 

and   .)cos()cos()(
2
1

2
1 δθ=δµ+δθδ+ TNTT  

 

To first order, these become 

 

    δθ=δ TN  

 

and    .NT δµ−=δ  

 

â    δθµ−=δ TT  

 

and hence by integration   .µα−= eMgF  
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24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.      Area of square             =    24a  

       Area of rectangle  =    )1(4 2 xa −   

       Area of triangle   =    )1(2 2 −+ yxa  

       Area of trapezoid  =    )1(2 2 yxa +−  

 

 

The weight of the cube is 8a
3ρsg, and it acts downward through C, the centre of 

mass.  The hydrostatic upthrust is 4a
3
(1 − x + y)ρg and it acts upward through the 

centre of buoyancy H.  Here ρ is the density of the fluid, and ρs is the density of 

the wood.  We evidently must find the X'- coordinate of C and of H.  Let’s first of 

all find the X- and Y- coordinates (see the next figure). 

 

The X- and Y- coordinates of C are trivial and quite easy respectively:   

 

   )21(CC xaYaX −==  

 

You are going to have to work quite hard at it to find the X- and Y- coordinates of 

H, the centre of buoyancy, which is the centroid of the trapezoid.  “After some 

algebra” you should find 

 

2ay 

2ax 

* 
* 

* 

C 

H 

X'-axis 

θ 

Y '-axis 

2a(x + y − 1) 
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)1(3

)22242(2

)1(3

)21(2 22

yx

ayxyxyx
Y

yx

ayx
X HH +−

−−++−
=

+−
+−

=  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To find the X '- coordinates of C and of H, we use the usual formulas for rotation 

of axes, being sure to get it the right way round: 

 

   ,
cossin

sincos

'

'

















θθ

θ−θ
=









Y

X

Y

X
 

 

together with   .1tan −+=θ yx  

 

Take moments about the axle (origin): 

 

   ).1(4'8 33
yxgasgXa C +−ρ=ρ   

 

After a little more algebra, you should eventually arrive at 

 

  .
)2232(3

3236273
2

23322

xyxyx

xyyxyxyx
s

++−−
++−−++−

=  

 

* 
* 

X-axis 

Y-axis 

C 

H 
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25.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let the radii of the cylinder and sphere be a and b respectively, and the mass of the 

sphere be M.  The angles θ and φ are related by aθ  =  bφ.  I have drawn the three forces 

on the sphere, namely its weight, the normal reaction of the cylinder on the sphere, and 

the frictional force on the sphere.  The transverse acceleration of the centre of the sphere 

is θ+ &&)( ba  and the centripetal acceleration is .)( 2θ+ &ba   The equations of motion are: 

 

   θ+=−θ &&)(sin baMFMg     (1) 

 

and   .)(cos 2θ+=−θ &baMNMg     (2) 

 

The angular acceleration of the sphere about its centre is ,)/1( θ+=φ+θ &&&&&& ba and its 

rotational inertia is 2Mb
2
/5.  The torque that is causing this angular acceleration is Fb, 

and therefore the rotational equation of motion is 

 

   .)/1(2

5
2 θ+= &&baMbFb      (3) 

 

Elimination of F between equations (1) and (3) yields 

 

    .sin
)(7

5
θ

+
=θ

ba

g
&&      (4) 

a 

b 

θ 

Mg 

F 
N 

φ 
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Write θθθθ dd /as &&&&  in the usual way and integrate with initial conditions ,0=θ=θ &  or 

from energy considerations: 

 

    .)cos1(
)(7

102 θ−
+

=θ
ba

g
&     (5) 

 

Substitute for 2and θθ &&&  into equation (2) to obtain 

 

    .)10cos17( −θ= MgN     (6) 

 

This is zero, and the sphere leaves the cylinder, when cos θ  = 10/17,  θ  =   53
o
 58' . 

 

 

 

 

26.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface density =  σ   g cm
−2 

 

Original sandwich: 

 

Mass = 54σ  g 

 

x-coordinate of centre of mass = 3  cm 

9 cm 

12 cm 

θ 

• 
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y-coordinate of centre of mass = 4 cm 

 

Bite: 

 

Mass = σπ 2

2
1 3 =14.137 166 94σ   g 

 

Distance of centre of mass from hypotenuse = 
π

=×
π

4
3

3

4
  =  1.273 239 545  cm 

 

x-coordinate of centre of mass = 
π

−=θ
π

−
5

16
5.4sin

4
5.4   =  3.481 408 364  cm 

 

y-coordinate of centre of mass =   
π

−=θ
π

−
5

12
6cos

4
6    =   5.236 056 273  cm 

 

 

Remainder: 

 

Mass  =  (54  −  14.137 166 94)σ   =   39.862 833 06σ   g 

 

x-coordinate of centre of mass =  x  

 

y-coordinate of centre of mass =   y  

 

 

Moments: 

 

39.862 833 06 x   +  14.137 166 94 × 3.481 408 364   =  54 × 3.    x  = 2.829 270 780 cm 

 

39.862 833 06 y   +  14.137 166 94 × 5.236 056 273   =  53 × 4.    y  = 3.561 638 436 cm  

 

This point is very close to the edge of the bite.  The centre of the bite is at (4.5, 6), and its 

radius is 3.  Its equation is therefore  

 

   .025.47129or,9)6()5.4( 2222 =+−−+=−+− yxyxyx  

 

The line x = 2.829 270 780 cuts the circle where .013336791.29122 =+− yy   The 

lower of the two points of intersection is at y = 3.508 280 941 cm.  The centre of mass is 

slightly higher than this and is therefore just inside the bite. 
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27.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a portion of the band within the angle δθ.  Its mass is .
2π
δθm

  When the band is 

spinning at angular speed ω and its radius is r, the centrifugal force on that portion is 

.
2

2

π
δθω

=δ
mr

F   (I leave it to the philosophers and the schoolteachers to debate as to 

whether there “really” is “such thing” as centrifugal force – I want to get this problem 

done, and I’m referring to a co-rotating frame.)  The y-component of this force is 

.
2

cos2

π
δθθωmr

  Also, the tension in the band when its radius is r is T  =  2πk(r − a). 

 

Consider the equilibrium of half of the band.  The y-component of the centrifugal force 

on it is .cos
2

22
2

2 π
ω

=θθ
π
ω
∫

π

π

+

−

mr
d

mr
   The opposing force is 2T  =  4πk(r − a).  Equating 

these gives .)(4 2
2

mr

ark −π
=ω  

 

 

 

 

 

 

 

 

 

 

θ 

δF 

T T 
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28.        Let the distance AB be l and the distance AC be c.  Let the mass of the rod be m. 

 

 

 

 

 

 

 

 

 

 

 

Consider an elemental portion  δx of the rod at P at a distance x from A.  Its weight is 

.
l

xm δ
  When the rod is about to move, it will experience a frictional force 

,
l

xmg
f

δµ
=δ  which will be in the direction shown if P is to the left of C, and in the 

opposite direction if P is to the right of C. When the rod is just about to move (but has not 

yet done so) it is still in equilibrium.  Consider the moment about A of the frictional 

forces on the rod.  The clockwise moment of the frictional forces on AC must equal the 

counterclockwise moment of the frictional forces on CB.  Thus 

 

   ∫∫
µ

=
µ l

c

c

dxx
l

mg
dxx

l

mg
.

0
 

 

∴        .2/lc =  

 

The net force on the rod is 

 

   ,
0 ∫∫

µ
+

µ
−

l

c

c

dx
l

mg
dx

l

mg
F  

and this is zero, and therefore  

 

   ( ) .12
)2(

mg
l

lcmg
F µ−=

−µ
=  

 

 

 

29.  The cone slips when tan θ  >  µ. 

  

It tips when C (the centre of mass) is to the left of M.   

 

The distance OC is h/4. (See Chapter 1, section 1.7). Therefore it tips when ./4tan ha>θ  

 

A P 
B C 

x 
δx 

δf 

F 
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Thus it slips if ha /4<µ  and it tips if ./4 ha>µ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30.    

 

 

 

 

 

 

 

 

 

 

 

 

When the block is just about to tip, the reaction of the table on the block acts at A and it 

is directed towards the point K, because, when three coplanar forces are in equilibrium 

they must act through a single point.   The angle λ is given by tan λ  =  a/x.  However, by 

the usual laws of friction, the block will slip as soon as tan λ  =  µ.  Thus the block will 

slip if µ  <  a/x, and it will tip if µ  >  a/x.  Expressed otherwise, it will slip if x  <  a/µ and 

it will tip if x  >  a/µ.  The greatest possible value of x is 2a;  therefore the block will 

inevitably slip if µ  <  ½. 

 

θ 

• 

O 

C 

M 

2a 

x 

K 

A 

λ 
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31.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When or if the cylinder is just about to tip, it is about to lose contact with the left hand 

peg.  The only forces on the cylinder are the torque, the weight, and the reaction R of the 

right hand peg on the cylinder, which must be vertical and equal to mg.  But the greatest 

possible angle that the reaction R can make with the surface of the cylinder is the angle of 

friction λ given by tan λ  =  µ.  From geometry, we see that sin θ = k, or 

.1/tan 2
kk −=θ   Thus the cylinder will slip before it tips if 21/ kk −<µ and it 

will tip before it slips if .1/ 2
kk −>µ  

 

If the cylinder tips (which it will do if 21/ kk −>µ ), the clockwise torque τ at that 

moment will equal the counterclockwise torque of the couple (R and mg), which is mgka.  

Thus the torque when the cylinder tips is 

 

TIP:     .mgak=τ      (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

2ka 

τ 

mg 

R θ 

θ 

2ka 

τ 

mg 
µN2 

N1 

µN1 

N2 
θ 
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When or if the cylinder is just about to slip, the forces are as shown above, in which I 

have resolved the reactions of the pegs on the cylinder into a normal reaction (towards 

the axis of the cylinder) and a frictional force, which, when slipping is about to occur, is 

equal to µ times the normal reaction.   The equilibrium conditions are 

 

   ,0sin)(cos)( 2121 =θ−+θ+µ NNNN  

 

   0cos)(sin)( 2121 =+θ+−θ−µ mgNNNN  

 

and    .)( 21 τ=+µ aNN  

 

We can find N1 + N2 by eliminating N1 − N2 from the first two equations, and then, 

writing 21 k− for cos θ, we find that, when slipping is about to occur, 

 

SLIP    .
1

1

1 22
k

mga
−

×
µ+

µ
×=τ    (2) 

 

I have drawn below the functions 

 

  k
mga

=
τ

 (tip)    and   
22

1

1

1 kmga −
×

µ+
µ

=
τ

(slip) 

 

for k = 0.1, 0.3, 0.5, 2/1 and 0.9.  The horizontal lines are the tip functions, and the 

curves are the slip functions.  As long as 21/ kk −<µ the cylinder will slip.  As soon 

as 21/ kk −>µ the cylinder will tip. 

  



 55 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

0.1

0.3

0.5

1/√2

0.9

k

µ

to
rq

u
e
/(

m
g
a
)

 
 

 

 

 

 

 

 

 

 

32.     
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We’ll leave to the philosophers the question as to whether centrifugal force “really 

exists”, and we’ll work in a co-rotating reference frame, so that the car, when referred to 

that frame, is in static equilibrium under the six forces shown.  Clearly, N1 and N2  =  mg  

and F1 + F2 =  mv2
/R. 

 

The car slips when F1 + F2  =  µ(N1 + N2);  that is, when .gRµ=v  

 

The car tips when ;/2 mgdRhm =v that is, when ./ hdgR=v  

 

That is, it will slip or tip according as to whether µ  <  d/h  or >  d/h. 

 

For example suppose d = 60 cm,  h = 80 cm,  g =  9.8 m s
−2

,  R = 30 m,  µ = 0.8. 

 

In that case, d/h = 0.75, so it will tip at v  =  14.8 m s
−1

  =  53.5 km hr
−1

. 

 

But if it rains, reducing µ to 0.7, it will slip at v  =  14.3 m s
−1

  =  51.6 km hr
−1

 . 

 

 

 

 

 

 

 

 

 

 

33. 
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mg 

θ&&a  

2θ&a  θ 
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     I have drawn in green the radial and transverse components of the acceleration of the 

centre of mass 2θ&a  and θ&&a  respectively.  I have drawn in red the weight of the rod and 

the normal and frictional components of the force of the table on the rod at A, N and F 

respectively. 

                       

   The following are the equations of motion: 

 

Normal:   .cos Nmgma −θ=θ&&     (1) 

 

Lengthwise:   .sin2 Fmgma +θ−=θ&     (2) 

 

Rotation:      .cos2 θ=θ gak &&      (3) 

 

Here k is the radius of gyration about A, given by 

 

    .22

3
12

alk +=      (4) 

 

From equations (1), (3) and (4), we obtain 

 

    .
3

.cos
22

2










+
θ=

al

l
mgN     (5) 

 

The space integral (see Chapter 6, section 6.2) of equation (3), with initial condition 

0=θ& when θ = 0, results in 

 

     .sin
2

2

2 θ=θ
k

ga
&     (6) 

 

This can also be obtained by equation the loss of potential energy, ,sin θmga  to the gain 

in kinetic energy, .22

2
1 θ&mk  

 

Combining this with equations (2) and (4) leads to 

 

    .
3

9
.sin

22

22












+

+
θ=

al

al
mgF     (7) 

 

At the instant of slipping, F  =  µN, and hence, from equations (5) and (7) we find 

 

    .
)/(91

tan
2la+

µ
=θ  
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34.   I derive 22
x

l

g
gx +=v  by two different methods – one from energy 

considerations, the other from angular momentum considerations.  First, energy. 

 

If the table top is taken to be the zero level for potential energy, the initial potential 

energy was ...
8
1

4
1

2
1 mgllgm −=−  

 

When the length of the dangling portion is ,
2
1 xl + the potential energy is  

.
2

)(
2

)(..
2

2
1

8
12

2
1

2
1

2
12

1

l

mgx
mgxmglxl

l

mg
xlgm

l

xl
−−−=+−=+







 +
−  

 

The loss of potential energy is therefore .
2

2

2
1

l

mgx
mgx +  

This is equal to the gain in kinetic energy ,2

2
1 vm  and therefore  
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    .22
x

l

g
gx +=v  

 

Another method: 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a point A.  Anywhere will do, but I have chosen it to be a distance l below the 

level of the table and l to the left of the table edge.  The moment of momentum (= angular 

momentum) of the chain about this point is ,xmlml &=v  and its rate of change is 

therefore .xml &&  The torque about A is .)(
2
12

1

mgxlmgl
l

xl
+=







 +
  These are equal, and 

so .)(
2
1 xlgxl +=&&    Write 

dx

d
x

v
v=&&  in the usual way, and integrate (with v = 0 when x 

= 0) and the result 22
x

l

g
gx +=v  follows. 

 

 

To find the relation between x and t we can use the energy equation 9.2.9 for conservative 

systems 

 

    
( )

.
2 0
∫ −

=
x

x xVE

dxm
t  

 

Here x0 = 0 and we have already seen that .
22

)( 2 mgx
x

l

mg
xVE +=−   Upon integrating 

this expression, we obtain, after a little algebra and calculus, 

xl −
2
1  

xl +
2
1  

v 

v 

• A 

mg
l

xl







 +
2
1
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   .ln
2
1

2

2
1













 +++
=

l

lxxlx

g

l
t            (1) 

 

The converse of this is the required expression 

 

              .
4

)1(
/

2/

t

t

lg

lg

e

el
x

−
=      (2) 

 

Differentiation of this with respect to time produces the third required expression: 

 

        .
4

)1(
/

/4

t

t

lg

lg

e

egl −
=v      (3) 

 

You may verify from these last two equations, if you wish, that .22
x

l

g
gx +=v  

 

 

The chain falls completely off the table when lx
2
1= . That is (by using equation (1)), at 

time  .317.1)32ln(
g

l

g

l
=+  

 

If we express distances in units of l, time in units of ,
g

l
 and therefore necessarily 

speeds in units of gl , equations (2) and (3) become 

 

)1(cosh)2(
4

)1(
2
1

4
1

2

−=−+=
−

= −
tee

e

e
x

tt

t

t

   (4) 

 

    t
e

e
t

t

sinh
4

1
2
1

2

=
−

=v       (5) 

 

and we can get the acceleration by a further differentiation: 

 

 

.cosh)(
2
1

4
1 teea

tt =+= −                                      (6) 
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We are pleased to note that, by the time that lx
2
1=   [i.e. when the chain completely 

leaves the table at time )/)32ln( glt += ], the acceleration is g.   The speed is then 

.866.0
4
3 lglg =      

 

 

 

 

35.   (a) 

  

 

 

 

 

 

 

 

The maximum overhang of book 1 is d1 = w.   

 

The centre mass of 1+ 2 is at 3w/2 from the left hand side (LHS) of 2, so d2 = w/2.          

 

The distance of the centre of mass of  1+2+3 is at 5w/2  from the LHS of  3, so d3 = w/3. 

 

Thus .38.1)1(
3
1

2
1

321 wwdddD &=++=++=         

 

 

      (b)    In a similar manner we find that, given n + 1 books, the maximum overhang is  

 

   .)1( 1
3
1

2
1 wD

n
++++= KK   

 

I don’t know if there is a simple expression for the sum to n terms of this harmonic series.  

Please let me know if you know of one or can find one.  Therefore I used a computer to 

solve 

 

   101 1
3
1

2
1 =++++

n
KK  

 

by brute force.  I got n = 12367, so you would need 12368 books. 

 

        (c)   The harmonic series is divergent and has no finite limit, so there is no finite 

limit to the possible overhang. 

 

       You might wish to speculate on any practical limitations on constructing such a pile 

of books.  For example, we have been assuming a uniform gravitational field – but this 

will no longer be valid once the overhang becomes comparable to the radius of Earth.  

This will, however, need quite a large number of books. 

D 

d1 

d2 

d3 

1 

2 

4 

3 
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36.  In the solution that follows, a prime )'(  will be used to denote differentiation with 

respect to x, and .'
dx

dy
yp ==   I shall also make use of an auxiliary variable 

.sinh 1 p−=φ   The initial conditions are y = 0,  x = a,  p = 0,  φ = 0.  The final conditions 

are x = 0,  p = −∞, φ = −∞,  y to be determined. 
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  At time t, the y-coordinate of the Man is v t .  If (x ,  y) are the coordinates of the Dog at 

that time, the slope of the path taken by the Dog is 

 

    ,
x

yt
p

−
−=
v

     (1) 

 

so that    .pxyt −=v      (2) 

 

The speed of the Dog is  

 

   .1 2

dt

dx
p

dt

ds
A +−=−=v     (3) 
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[This comes from .)/(1 2
dxdxdyds +=  The minus sign is necessary because 

)/( dtdx is negative, and Av, the speed (not velocity!) of the Dog is necessarily positive.]   

 

Now ,'/1)/( tdtdx −= so equation (3) can be written 

 

    .1' 2
ptA +−=v      (4) 

 

If we can eliminate t between equations (2) and (4), we will obtain a relation between the 

slope p and x, and hence potentially a relation between y and x. 

 

Differentiate equation (2) with respect to x (recalling that py =' ): 

 

    .'' xpt −=v       (5) 

 

It is now simple to eliminate 't  from equations (4) and (5): 

 

    .1' 2
pxAp +=      (6) 

 

On separating the variables and integrating, we obtain 

 

           .
1 2 x

dx

p

dp
A ∫∫ =

+
     (7) 

 

With initial conditions p = 0 when  x = a, this gives us 

 

          ,)/ln(sinh 1 axpA =−      (8) 

 

or    ,φ= Aaex       (9) 

 

where    .sinh 1 p−=φ       (10) 

 

Equation (9), with (10), gives us the relation between x and the slope, p.  Note that p and 

hence φ are negative, so that equation says that x < a. 

 

Our next task will be to find a relation between y  and p (or between y and φ). 

 

From equation (10) we have 

 

    ,sinh dxdy φ=      (11) 

 

and from equation (9) we have 
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    .φ= φdaAedx A      (12) 

 

From these we obtain the differential relation between y and φ: 

 

    ,sinh φφ= φ daAedy A     (13) 

or   ( ) .)1()1(

2
1 φ−= φ−φ+

deeaAdy
AA     (14) 

 

Integrate this, with initial condition φ  =  0  when y  =  0, to obtain 

 

  .
1

2

11 2

)1()1(

2
1










−
+

−
−

+
=

φ−φ+

AA

e

A

e
aAy

AA

    (15) 

 

Equation (9) and (15) are parametric equations to the path of the Dog, though it is easy to 

eliminate φ and write y explicitly as a function of x: 

 

  
( ) ( )

.
1

2

11 2

/11/11

2
1















−
+

−
−

+
=

−+

AAA
aAy

A

a
xA

a
x

    (16) 

 

The figure was drawn for a = 1, A = 2, for which equation (16) reduces to 

 

   ].2)3([ 2/1

3
1 +−= xxy      (17) 

 

The distance walked by the Man is found by putting ∞−=φ  in equation 15.  Thus 

 

    ,
12 −

=
A

aA
y       (18) 

and the time taken is 

 

    .
)1( 2 −

=
A

aA
t

v
     (19) 

 

 

37.   Let l be the length of the string. 

 

     a. 

Kinetic energy of the upper mass =  .)( 2

2
122

2
1 rmmr &+ω  

 

Kinetic energy of the lower mass =  .2

2
1 rm &   

 

Potential energy of the lower mass =   ).( rlmg −=  
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Total energy of the system =  ).()( 222

2
1 rlmgrmmr −−+ω &   (1) 

 

Initial total energy of the system =   ).()( 2

0

2

2
1 almgma −−ω   (2) 

 

Energy is conserved and therefore, by equating (1) and (2), we obtain 

 

 .)( 22

2
12

0

2

2
12 ω−ω+−= raragr&      (3) 

 

Angular momentum is also conserved, and therefore 

 

  .0

22 ω=ω ar        (4) 

 

On elimination of r between equations (3) and (4) we obtain, after some algebra, 

 

   .1
2

1 0

0

2
0

2

ω
ω

−








ω
ω

−
ω

+=
g

a

ga

r&
   (5) 

 

 

b.    If ,/and 0

2

0 ωω=Ω=ω ga  it is trivial to show that 

 

   ./1
2
1

2
3

2

Ω−Ω−=
ga

r&
    (6) 

  

c.   Algebra and calculus show that Ω−Ω− /1
2
1

2
3 is negative for all positive 

Ω except for Ω  = 1, when it reaches a maximum value of zero. 

 

d.   If ,/and2 0

2

0 ωω=Ω=ω ga  it is trivial to show that 

 

        ./12
2

Ω−Ω−=
ga

r&
    (7) 

  

Algebra and calculus show that Ω−Ω− /12  reaches a maximum value for 

,961629.02/1/ 3/2

0 ==ωω=Ω  at which time .118110.0)/(2 =gar&   That is, when 

.841331.0 gar =&   Equation (4) (conservation of angular momentum) shows that 

.921259.12/ 3 aaar ==Ω=     
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Solution of 0/12 =Ω−Ω− shows that the speed is zero when Ω  =  1 (the initial 

condition) and when 966381.0/ 0 =ωω=Ω  (the equilibrium value).  Equation (4) 

(conservation of angular momentum) shows that .034618.1/ aar =Ω=     

 

 

e.   If ,/and 02
12

0 ωω=Ω=ω ga  it is trivial to show that 

 

        ./1
4
1

4
5

2

Ω−Ω−=
ga

r&
    (8) 

  

Algebra and calculus show that Ω−Ω− /1
4
1

4
5  reaches a maximum value for 

,401587.12/ 3/2

0 ==ωω=Ω  at which time .449059.0)/(2 =gar&   That is, when 

.822243.0 gar −=&   Equation (4) (conservation of angular momentum) shows that 

.701793.02// 3 aaar ==Ω=     

 

Solution of 0/1
4
1

4
5 =Ω−Ω− shows that the speed is zero when Ω  =  1 (the initial 

condition) and when 447438.2/ 0 =ωω=Ω  (the equilibrium value).  Equation (4) 

(conservation of angular momentum) shows that .388640.0/ aar =Ω=     

 

 

How much further can we go with this question?  By elimination of r between equations 

(3) and (4) we obtained a relation between r& and ω.  By elimination of ω between 

equations (3) and (4) we can get a relation between r& and r.  It will be of the form 

 

    ,/ 2
rBgrAr −−=&     (9) 

 

where .and 4

0

42

0

2

2
1 ω=ω+= aBagaA   If you can integrate this, you then get a 

relation between r and t.  I haven’t given much though as to whether you can get integrate 

equation (9) analytically (if anyone manages it, please let me know), but at least a 

numerical integration will certainly be possible. 

 

In another variation of the question, you can start with an equilibrium situation in which 

,2

0 ga =ω  and then add an extra mass m  (or M, if you want to make it more general) and 

then follow the motion from there.  I leave that to you. 

 

 

38.     Let’s look at the rod from above when it is twisted in the horizontal plane through a 

small angle θ.  
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Each of the points where the threads are attached to the rod is displaced horizontally 

through a distance .
2
1 θD    (Since θ is small and ,LD <<  we can neglect the slight 

vertical rise in the position of the rod.)  Each thread is now displaced from the vertical by 

an angle φ given by 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

The tension T in each thread is ,cos
2
1 φmg  which, to first order in φ, is just .

2
1 mg  

 

The horizontal component of each of these forces is ,sin
2
1 φmg  which, to first order in φ, 

is .
2
1 φmg  

 

 

 

 

 

 

 

 

θ 

φ 

θD
2
1

 

L 

.2
1

L

Dθ
=φ  

θ 
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Therefore the rod experiences a restoring torque equal to .
2
1 φmgD   But 

L

Dθ
=φ 2

1

and 

therefore the restoring torque is .
4

2

L

mgD θ
 

 

The equation of motion is therefore  

 

     θ−=θ
L

mgD
I

4

2

&&  

 

and consequently the period P of small oscillations is  

 

.
44

2
2

mg

IL

DmgD

IL
P

π
=π=  

 

If the rod is uniform and of length 2l, its moment of inertia is ,2

3
1 ml  and in that case the 

period of small oscillations is  

 

.
3

4

g

L

D

l
P

π
=  

 

There is no need to remind the reader to check the dimensions of these equations. 

 

 

 

 

 

 

39.   When the yo-yo has fallen through a distance x, it has lost potential energy Mgh, and 

it has gained translational kinetic energy 2

2
1 vm  and gained rotational kinetic energy 

,2

2
1 ωI  where ./av=ω    Therefore ,)/( 2

2
12

2
1 aIMMgx vv +=  from which 

 

...2
2

2
2

x
IMa

gMa

+
=v  

 

 Thus, from the usual equations for constant linear acceleration, the acceleration is 

 

.
2

2

g
IMa

Ma
×

+
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The net downward force is ,PMg − where P is the tension in the string.  This is equal to 

M  times the acceleration, from which we obtain 

 

.
2

Mg
IMa

I
P ×

+
=  

 

40 (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 I have drawn four forces on the yo-yo.  Its weight Mg.  The tension P in the string.  The 

normal reaction N of the table on the yo-yo.  And the frictional force F of the table on the 

yo-yo.  As long as the yo-yo is in contact with the table and there is no vertical 

acceleration, we must have P N Mg+ = .  

 

Let us suppose that there is no slipping between the yo-yo and the table, so that the yo-yo 

rolls to the left.  We note that there is a net force F  to the left, and a net counterclockwise 

torque about C equal to .FbPa −   Thus the yo-yo accelerates to the left at a rate F/M it 

and experiences a counterclockwise angular acceleration ./)( IaFbPa −   If there is no 

slipping, these must be related by ./
I

FbPa
bMF

−
×=   Thus, if there is no slipping, 

 

.
2

P
MbI

Mab
F 









+
=      (1) 

 

The linear acceleration to the left must be F/M, or 

 

Mg 

P 

N 

C Q 

A F 

Inner radius a 

Outer radius b 
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     .
2

MbI

abP

+
      (2) 

 

 

 

__________________________ 

 

 

Alternative derivation: 

  

There is a net counterclockwise torque about A equal to Pa.  The moment of inertia with 

respect to A is .2MbI +  Therefore there is an angular acceleration about A equal to 

.
2

MbI

Pa

+
  Therefore the linear acceleration of C to the left is ,

2
MbI

abP

+
 and the 

frictional force F is M times this, or .
2

P
MbI

Mab
F 









+
=      

 End of Alternative Derivation. 

__________________________ 

 

 

However, if the yo-yo is just about to slip, F N Mg P= = −µ µ( ).  Upon substitution of 

this into equation (1), we see that the yo-yo will just slip if 

 

    .
)(

)(
2

2

MabMbI

MbIMg
P

++µ
+µ

=     (3) 

 

That is, the yo-yo will roll to the left without slipping if 

 

    .
))(( 2

MbIPMg

MabP

+−
>µ     (4) 

 

Its linear acceleration is then given by equation (2), namely 

 

.
2

MbI

abP

+
     (2) 

 

On the other hand, the yo-yo will rotate counterclockwise with no rolling if 

 

    .
))(( 2

MbIPMg

MabP

+−
<µ     (5) 
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The sum of the counterclockwise moments of the forces about C is then ,FbPa −  where 

).( PMgNF −µ=µ=   The counterclockwise angular acceleration about C is  

 

.
)(

I

MgbaP

I

FbPa µ−µ−
=

−
    (6) 

 

 

 

40(b) 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have drawn the four forces on the yo-yo.  Its weight Mg.  The normal reaction of the 

table on the yo-yo, which is also of magnitude Mg.  The tension P in the string.  And the 

frictional force F of the table on the yo-yo.  

 

At this point it may not be immediately obvious whether F acts to the left or the right.  

For example, let us suppose that the coefficient of friction is zero.  The force P will result 

in a translation of the yo-yo to the right together with a clockwise rotation of the yo-yo.  

So, in which direction does the point A on the circumference of the yo-yo move − to the 

left or the right?  It is hard to say, but one might suppose, qualitatively, that, if the 

moment of inertia is large, the induced rotation will be sluggish, so that A moves to the 

right.  Whereas if I is small, the induced rotation will be rapid, and A will move to the left 

in spite of the translational motion of the centre of mass to the right.  From this we might 

conclude that, if ,0≠µ  F will act to the right if I is small, and F will act to the left if I is 

large.  The following analysis shows that this qualitative expectation is correct. 

 

(The reader might find some of the Problems in Section 8.2 of Chapter 8 to be helpful at 

this point, particularly Problem 2.5.) 

 

 

For the time being, I have drawn F as if acting towards the left.   

P 

F 

Mg 

Mg 

A 

Inner radius a 

Outer radius b 

 C 
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Let us suppose there is no slipping and that the yo-yo rolls. 

 

The sum of the clockwise moments of the forces about A is ),( baP +  and the moment of 

inertia about A is .2MbI +   The yo-yo therefore undergoes an initial clockwise angular 

acceleration about A equal to ,
)(
2

MbI

baP

+
+

 and, therefore (if there is no slipping), an initial 

linear acceleration of C to the right equal to  

 

.
)(

2
MbI

baPb

+
+

     (1) 

 

The above linear acceleration must equal ,/)( MFP −  from which we obtain 

 

    .
2

P
MbI

MabI
F 









+
−

=      (2) 

 

This shows that the frictional force F acts to the left, as shown, if ;MabI > but if 

,MabI < the frictional force F acts to the right.  This is in agreement with our qualitative 

expectations, namely that F will act to the left if I is large, and to the right if I is small.   

 

Let is consider three cases in turn:  .and, MabIMabIMabI =<>  

 

  (i) .MabI >    In this case, F acts to the left, as drawn.  Provided ,MgF µ< there will 

be no slipping at A, and the yo-yo will roll to the right without slipping. On recalling 

equation (2), we see that the yo-yo will roll to the right without slipping, with a linear 

acceleration given by equation (1) if 

 

    .
2 

















+
−

>µ
Mg

P

MbI

MabI
    (3) 

 

The linear acceleration to the right is given by equation (1), namely 

 

.
)(

2
MbI

baPb

+
+

     (1) 

 

 

However, if    ,
2 

















+
−

<µ
Mg

P

MbI

MabI
    (4) 
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slipping occurs at A.  The frictional force is the no longer given by equation (2), but is 

given by 

 

                      ,MgF µ=      (5) 

 

and it acts to the left. 

 

(We are concerned in this problem with the initial motion.  Once motion is underway, µ 

has to be replaced with the smaller coefficient of kinetic friction.) 

 

The net force to the right is then ,MgP µ−  so the linear acceleration of C to the right is  

 

                                                    .
M

MgP µ−
        (6) 

 

Because of condition (4), this is necessarily positive. 

 

The net clockwise moment of the forces about the centre of mass C is .MgbPa µ+   The 

yo-yo therefore undergoes a clockwise angular acceleration about C of  

 

       .
I

MgbPa µ+
       (7) 

 

The linear acceleration to the right of the point A on the circumference of the yo-yo is 

 

,
I

MgbPa
b

M

MgP µ+
×−

µ−
and, because of condition (4),  some algebra will show 

that this is necessarily positive, as expected. 

 

 

  (ii) .MabI <   In this case, F acts to the right, and the linear acceleration is 

./)( MFP +   Provided that 

 

    ,
2 

















+
−

>µ
Mg

P

IMb

IMab
    (8) 

 

the yo-yo will roll to the right with a linear acceleration given by equation (1), namely 

 

.
)(

2
MbI

baPb

+
+

     (1) 
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However, if    ,
2 

















+
−

<µ
Mg

P

IMb

IMab
    (9) 

 

slipping occurs at A.  The frictional force is then given by 

 

               ,MgF µ=       (10) 

 

and it acts to the right. 

 

The net force to the right is then ,MgP µ+  so the linear acceleration to the right is  

 

                                                    .
M

MgP µ+
        (11) 

 

The net clockwise moment of the forces about the centre of mass C is .MgbPa µ−   The 

yo-yo therefore undergoes a clockwise angular acceleration about C of  

 

       .
I

MgbPa µ−
       (12) 

 

The linear acceleration to the left of the point A on the circumference of the yo-yo is 

 

,
M

MgP

I

MgbPa
b

µ+
−

µ−
× and, because of condition (8),  some algebra will show 

that this is necessarily positive, as expected. 

 

 

.MabI =   In this case, F is zero.   Whatever the coefficient of friction, even zero, the 

yo-yo will undergo a linear acceleration MP /  to the right (Verify that this is consistent 

with equation (1)), and a clockwise angular acceleration about C equal to ./ IPa  The 

linear acceleration to the right of the point A on the circumference of the yo-yo is 

      

,
I

Pa
b

M

P
×−  

 

which is zero.  The initial linear velocity of the point A is therefore zero. 
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40 (c) 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

I have drawn the four forces on the yo-yo.  Its weight Mg.  The normal reaction of the 

table on the yo-yo, which is also of magnitude Mg.  The tension P in the string.  And the 

frictional force F of the table on the yo-yo.  On this occasion (unlike in Problem 40 (b)) 

there is no question about the direction of F, which is towards the left. 

 

Let us suppose there is no slipping. 

 

The sum of the clockwise moments of the forces about A is ),( abP −  and the moment of 

inertia about A is .2MbI +   The yo-yo therefore undergoes an initial clockwise angular 

acceleration about A equal to ,
)(
2

MbI

abP

+
−

 and therefore (if there is no slipping) an initial 

linear acceleration to the right equal to  

 

.
)(

2
MbI

abPb

+
−

     (1) 

 

Additional string therefore becomes wrapped around the axle.  (Yes, it really does!  I 

tried it!) 

 

The above linear acceleration must equal ,/)( MFP −  from which we obtain 

 

    .
2

P
MbI

MabI
F 









+
+

=      (2) 
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Provided ,MgF µ< there will be no slipping at A, and the yo-yo will roll to the right 

without slipping. Thus the yo-yo will roll to the right without slipping, with a linear 

acceleration given by equation (1) if 

 

    .
2 

















+
+

>µ
Mg

P

MbI

MabI
    (3) 

 

However, if    ,
2 

















+
+

<µ
Mg

P

MbI

MabI
    (4) 

 

slipping occurs at A.  The frictional force is the no longer given by equation (2), but is 

given by 

 

                      ,MgF µ=      (5) 

 

and it acts to the left. 

 

The net force to the right is then ,MgP µ−  so the linear acceleration of C to the right is  

 

                                                    .
M

MgP µ−
        (6) 

 

Because of condition (4), this is necessarily positive. 

 

The net counterclockwise moment of the forces about the centre of mass C is 

.MgbPa µ−   The yo-yo therefore undergoes a counterclockwise angular acceleration 

about C of  

 

       .
I

MgbPa µ−
       (7) 

 

By virtue of condition (4), both of these expressions ((6) and (7)) are necessarily positive. 

 

 

 

 

 

 

 

 

 

 

40(d) 
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I have drawn the four forces on the yo-yo.  Its weight Mg.  The normal reaction N of the 

table on the yo-yo.  The tension P in the string.  And the frictional force F of the table on 

the yo-yo.  From geometry we can find that the perpendicular distance from A to the line 

of the string is .cosθ+ ba  

 

Let us suppose there is no slipping.   (And we shall also suppose that ,sin MgP <θ so 

that the yo-yo is not lifted bodily off the table!) 

 

The sum of the clockwise moments of the forces about A is ),cos( θ+ baP  and the 

moment of inertia about A is .2MbI +   The yo-yo therefore undergoes an initial 

clockwise angular acceleration about A equal to ,
)cos(

2
MbI

baP

+
θ+

 and, therefore, if there 

is no slipping, it undergoes an initial linear acceleration to the right equal to  

 

.
)cos(

2
MbI

baPb

+
θ+

    (1) 

 

The above linear acceleration must equal ,/)cos( MFP −θ  from which we obtain 

 

    .
cos

2
P

MbI

MabI
F 









+
−θ

=     (2) 

 

The frictional force F therefore acts to the left, as drawn, if IMab /cos >θ , and to the 

right if IMab /cos <θ . 

At this point it is left to the reader to pursue this further with the same rigour as we did in 

the solution to Problem 40(b).  As in Problem 40(b), the yo-yo will accelerate towards the 

P 

F 

Mg 

N 

A 

Inner radius a 

Outer radius b 

String makes angle 

θ with horizontal. 
C 



 78 

right, with or without slipping, depending on the magnitude of the coefficient of friction. 

The condition for slipping is ).sin( θ−µ> PMgF   If slipping does not occur, the yo-yo 

rolls to the right.  If slipping occurs, C accelerates to the right, and the yo-yo undergoes a 

clockwise angular acceleration.  This may result in F being directed to either left or right, 

as in Problem 40(b).  Apart from the addition of a cosθ is many of the equations, the 

solutions to Problems 40(b) and 40(d) should be broadly similar.  Problem 40(e), 

however, has an additional point of interest.   

 

 

40(e) 

 

  

              

    

 

 

 

 

 

 

 

 

 

 

 

I have drawn the four forces on the yo-yo.  Its weight Mg.  The normal reaction N of the 

table on the yo-yo.  The tension P in the string.  And the frictional force F of the table on 

the yo-yo.  From geometry we can find that the perpendicular distance from A to the line 

of the string is .cos ab −θ  

 

The clockwise moment of P about A is ).cos( abP −θ   The moment of inertia about A is 

.2MbI +  If there is no slipping, the yo-yo turns about A with a clockwise angular 

acceleration  

 

     .
)cos(

2
MbI

abP

+
−θ

    (1) 

 

 

 

 The linear acceleration of C to the right is therefore  

 

     .
)cos(

2
MbI

abPb

+
−θ

    (2) 
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  This must be equal to ,cos

M

FP −θ
 from which we find that 

 

        ,
cos

2
P

MbI

MabI
F 









+
+θ

=     (3) 

 

acting to the left. 

 

However, we can see, either from the drawing, or from equation (1), that, if the string is a 

little steeper, so that ,/cos ba<θ the moment of P about A is counterclockwise, and the 

yo-yo will roll to the left. 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

The perpendicular distance from A to the line of the string is now .cos θ− ba  

 

The counterclockwise moment of P about A is ).cos( θ− baP   The moment of inertia 

about A is .2MbI +  If there is no slipping, the yo-yo turns about A with a 

counterclockwise angular acceleration  

 

     .
)cos(

2
MbI

baP

+
θ−

    (4) 

 

 The linear acceleration of C to the left is therefore  

 

     .
)cos(

2
MbI

baPb

+
θ−

    (5) 
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  This must be equal to ,cos

M

PF θ−
 from which we find that 

 

        ,
cos

2
P

MbI

MabI
F 









+
+θ

=     (6) 

 

acting to the left. 

 

In either case, slipping occurs if ).sin( θ−µ> PMgF  

 

If ,/cos ba=θ  the four forces  act through a point (A), and, in the absence of slipping, 

the four forces are in static equilibrium.  Equation (3) or (6) becomes  ,cosθ= PF which 

is otherwise obvious.  The yo-yo will roll neither clockwise nor counterclockwise.  When 

I tried this with an actual physical model, I found that, when ),/(cos 1 ba−<θ the yo-yo 

rolled very easily to the right while wrapping its axle around the string, and that when 

),/(cos 1 ba−>θ it rolled equally easily to the left.  But when ),/(cos 1 ba−=θ  I could pull 

on the string quite hard and nothing moved.  Only when I pulled with a force greater than 















−µ+

µ
=

θµ+θ
µ

22sincos aba

bMgMg
,  did I manage to drag the yo-yo along the  table 

to the right, without rotation. 

 

 

 

 

41. 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

  There are several routes to the answer.  The following is just one possibility.  You may 

work it quite differently. 
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  We can consider the thing (which would be called a trapezium in British English and a 

trapezoid in American English, but which I’m going to refer to hereafter as the thing) to 

be made up of a rectangle and a triangle.  I have indicated, by dots at A, B, C, the 

positions of the centres of mass of the rectangle, the triangle, and the thing.  I’m taking 

the origin of coordinates to be the point O. 

 

The coordinates of the centre of mass A of the rectangle (of mass 2m) are ),(
2
1 aa . 

 

The coordinates of the centre of mass B of the triangle (of mass m) are ).,(
3
4

3
4 aa  

              

The coordinates ),( yx of the centre of mass C of the thing with respect to the point O 

are given by 

 

.23

23

3
4

2
1

3
4

amamym

ammaxm

×+×=

×+=

 

 

 

Hence:        .
9
7

9
10 ayax ==  

 

 

 

 

 

Here is a summary of some distances: 

    

Coordinates of A with respect to O:   ),(
2
1 aa  

Coordinates of B with respect to O: ),(
3
4

3
4 aa    

Coordinates of C with respect to O: ),(
9
7

9
10 aa  

 

Coordinates of C with respect to A:   ),(
18
5

9
1 aa  

Coordinates of C with respect to B: ),(
9
5

9
2 aa −−  

 

Coordinates of B with respect to Q: ),(
3
1

3
2 aa−  

 

 

It’s easy to make a mistake, so it may be worthwhile at this stage to verify that the three 

points ABC are collinear.   There are several ways of doing this.  One way is to make use 

of equation 2.2.12 in my Celestial Mechanics notes.  This says that the area of a triangle 

enclosed by three points is  
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111

321

321

2
1 yyy

xxx

 . 

 

Therefore, if we find that 

111

1

9
7

3
4

2
1

9
10

3
4

 is zero, this will show that the three points are 

collinear.  If it isn’t zero, we’ve made a mistake.  If it is zero, we still have to assure 

ourselves that C is the correct distance between A and B, which should be one third of the 

distance from A to B.  Both of these tests seem to be satisfied, so all is well so far. 

 

 

Now for the moments and products of inertia.  

 

 

========================== 

 

  

We’ll start with the rectangle. 

 

Moment of inertia about a horizontal axis through its centre of mass 

 

 .))(2( 2

6
12

2
1

3
1 maam ==  

 

Moment of inertia about a vertical axis through its centre of mass 

  

.)2( 2

3
22

3
1 maam ==  

 

Product moment of inertia with respect to horizontal and vertical axes through its centre 

of mass 

 

.0=  

 

Now let us apply the parallel axes theorem and move to C: 

 

Moment of inertia of the rectangle about a horizontal axis through the centre of mass of 

the thing 

 

 .)(2 2

81
262

18
52

6
1

rect maammaA =+=  

 

Moment of inertia of the rectangle about a vertical axis through the centre of mass of the 

thing 
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.)(2 2

81
562

9
12

3
2

rect maammaB =+=  

 

Product moment of inertia with respect to horizontal and vertical axes through the centre 

of mass of the thing. 

 

.))((20 2

81
5

18
5

9
1

rect maaamH =+=  

 

========================== 

 

 

Now for the triangle    

 

Moment of inertia about a horizontal axis through its centre of mass 

 

 .)( 2

18
12

3
12

6
1 maamma =−=  

 

[In calculating this moment of inertia of the triangle, I first wrote down its moment of 

inertia about its base;  then I went to its centre of mass, using the parallel axes theorem.]   

 

Moment of inertia about a vertical axis through its centre of mass 

  

.)2()2)(( 2

9
22

3
12

6
1 maamam =×−=  

 

[In calculating this moment of inertia of the triangle, I first wrote down its moment of 

inertia about its right hand edge;  then I went to its centre of mass, using the parallel axes 

theorem.]   

 

 

Product moment of inertia with respect to horizontal and vertical axes through its centre 

of mass.  We are going to have to refer carefully to Section 2.11 of Chapter 2.  I find that 

the product moment of inertia of the triangle with respect to horizontal and vertical axes 

through its centre of mass is 

.))(2( 2

18
1

36
1 maaam +=+  

 

 

Now let us apply the parallel axes theorem and move to C: 

 

Moment of inertia of the triangle about a horizontal axis through the centre of mass of the 

thing 

 

 .)( 2

162
592

9
52

18
1

tria maammaA =+=  
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Moment of inertia of the triangle about a vertical axis through the centre of mass of the 

thing 

 

.)( 2

81
222

9
22

9
2

tria maammaB =+=  

 

Product moment of inertia with respect to horizontal and vertical axes through the centre 

of mass of the thing. 

 

.))(( 2

162
29

9
5

9
22

18
1

tria maaammaH =−−+=  

 

 

========================== 

 

 

 

Now for the moments and product of inertia of the entire thing with respect to horizontal 

and vertical axes through its centre of mass.   I’ll call these moments A, B and H. 

 

.2

54
372

162
592

81
26 mamamaA =+=  

 

.2

27
262

81
222

81
56 mamamaB =+=  

 

.2

54
13

162
292

81
5 mammaH =+=  

 

In units of 2

54
1 ma , these are .13,52,37 === HBA   We now have to find the 

orientation of the principal axes, which are inclined to the horizontal and vertical axes by 

angles given by  .
15

26

3752

262
2tan =

−
=

−
=θ

AB

H
   That is,  

 

θ   =   30º.009 180   and   120º.009 180 . 

 

The principal moments of inertia are given by 

 

.sincossin2cos 22 θ+θθ−θ BHA  

 

With the above two angles I obtain, in units of  2

54
1 ma , 29.491669  and 59.508331, or, in 

terms of 2
ma , 

 

.102006.1,546142.0 2
0

2
0 maBmaA ==  
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I have chosen to denote the smaller principal moment of inertia by A0, and the larger by 

B0, which is the more usual convention.  As a check on the arithmetic, note that the trace 

of the inertia tensor is unaltered by the rotation.  That is, 0A +  B0  =   A  +  B. 

 

The lengths of the axes of the momental ellipse are inversely proportions to the square 

roots of the principal moments of inertia.  That is to say the ratio of the semi major axis to 

the semi minor axis is  .420493.1
546142.0

102006.1
==

b

a
   This means that its eccentricity 

is 0.71022. 

 

The area of the thing is 23a , and, if I draw the ellipse so that its area is equal to the area 

of the thing, then .3 2a=πab    This gives .81991.0,16468.1 aa == ba  

 

I have drawn the momental ellipse below superimposed upon the thing, with their 

centroids coinciding, and their areas equal, so that the moments if inertia of either body 

about any axis in the plane through the centroid are equal. 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42. 

 Before starting, it might be worth noting that there are no horizontal forces on the 

system.  The x coordinate of the centre of mass therefore remains fixed.   The height of 

the centre of mass, however, varies as the pendulum swings; during the motion the 

vertical force exerted on the system by the table varies periodically. 

 

* 
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We can do this problem by Lagrangian methods.   That is to say, we start by indicating, 

with blue arrows, the velocity components, and then we write down the kinetic and 

potential energies of the system. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we can start: 

 

.cosconstant

),cos2( 222

2
12

2
1

θ−=

θθ+θ++=

mglV

xllxmxMT &&&&&

 

 

Apply the Lagrange equations to x and to θ to obtain the required result: 

 

.sinsincos

,0)sincos()( 2

θ−=θθ−θ+θ

=θθ−θθ++

gxxl

mlxmM

&&&&&&

&&&&&
 

 

On using the specified approximations, we obtain 

 

.0

,0)(

=θ++θ

=θ++

gxl

mlxmM

&&&&

&&&&
 

 

On elimination of x&&  between these two equations, we obtain 

 

θ
+

−=θ
Ml

gmM )(
&&  

 

and hence          .
)(

2
gmM

Ml
P

+
π=  

 

 

M 

m 

l 

θ 

x 

θ&l  

x&  

x&  
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43.  According to Chapter 7, Section 7.1,  the range on a horizontal plane for a projectile 

launched with initial speed V is .2sin2

g

V α
   In this case,  α=

2
1

0 cosVV , so the range R 

is                                      .2sincos
2sincos

2
122

122
0 αα=

αα
= k

g

V
R  

Question:   Differentiate this now, or first do some trigonometric manipulation and then 

differentiate it?  I’m not sure which is best, but I am going to differentiate it now: 

.0)1cos2)(cos1(cossin

2coscos22sinsin
1

22

2
12

2
1

=−αα++αα−=

αα+αα−=
αd

dR

k  

Then, with α−=α 22 cos1sin , and α= cosc  and some routine algebra, we arrive at 

 

01223 23 =−−+ ccc  

 

This cubic equation has one positive and two negative real roots, but we are searching for 

a solution with  0 < α < 90º, so we are looking for the positive real root, which is  

c = 0.767 591 88, corresponding to  '5139o=α . 

 

44.   The condition for stability, from Chapter 16 Section 16.9, equation 16.9.5 is that 

.HC
2

>
V

Ak
 

k
2
 for a filled circle of radius a is 2

4
1 a .  If the length of the cylinder is l, the volume 

immersed is Asl, so the left hand side of the inequality is 
sl

a

4

2

. 

The depth of the centre of mass is )(
2
1−sl  and the depth of the centre of buoyancy is  

ls
2
1 , so that )1(

2
1 slHC −= .  The condition for stability is, then,  )1(

4 2
1

2

sl
sl

a
−> . 

With )2/( alL = , this gives, for the condition for stability, 

)1(8

1

ss
L

−
<  
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This function is least for .707.0
2

1
,

2
1 =<= Ls    For any length less than this, the 

system is stable for any density.   With L = 1, the inequality can be written 

0188 2 >+− ss , so that s must be less than 0.146 or greater than 0.854. 

 

 

45.   Before doing the problem, let’s just have a look at the “interesting” property of a (4, 

5, 6) triangle. 
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Calculate A by the cosine rule:   Acos60362516 −+=  ,     hence  
4
3cos =A . 

 

Calculate C by the cosine rule:   Ccos40251636 −+=  ,     hence  
8
1cos =C . 

 

But 
8
12 1cos22cos =−= AA .   Therefore  AC 2= . 

 

The external angle at B  is 3A. 

 

The angles are   A  =   41º.4096      C  =   82º.8192       B  =   55º.7711    )(cos
16
9=B  

  Supplement of B  =  124º.2289 

 

It is not the case that a triangle with one angle equal to twice another one is necessarily a 

(4, 5, 6) triangle. 

 

After that diversion, let’s move on to the given problem - except that  we’ll generalize it 

to make the length of the rod 2l, and the lengths of the strings a and b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The only physics involved is to recall that, if three coplanar forces are in equilibrium, 

they must be concurrent at a point - in this case the point C.  This means that C must be 

vertically above the mid-point of the rod. 

 

   After that, there is no more physics; the rest is “just” geometry.   All we have to do is to 

find θ in terms of a and b. 
 
 

A 

B 

C 

b 

a 

l 

l 

θ 
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   If C is to be directly above the mid-point, then AN  =   MB.   That is: 

 

)cos()cos( θ−=θ+ BaAb . 

 

This quickly results in 

 

BaAb

BaAb

sinsin

coscos
tan

+

−
=θ . 

 

In our particular example, 8.0
5

4
==

b

a
,  AB 3180o −= , and A  =   41º.4096 . 

Thus                              ,
3sin8.0sin

3cos8.0cos
tan

AA

AA

+
+

=θ  

and    θ   =   12º.78 

 

If the weight of the rod is mg, I’ll leave it to you to work out the tensions in the strings. 
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46.      The only physics involved is to recall that, if three coplanar forces are in 

equilibrium, they must be concurrent at a point - in this case the point C.  This means that 

C must be vertically above the mid-point.   Also, since the planes are smooth, the forces 

at A and B are perpendicular to the planes. 

 

           The rest is geometry - almost the same as in Problem 45, except that in this 

problem we are given the angles α and β rather than the lengths a and b.  Start by 

convincing yourself that the two angles at C are indeed α and β, as marked.   Now all that 

is required is to express θ in terms of α and β. 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the mid-point of the rod must be vertically below C, we must have  AN  =  MB.   

That is: 

β=α sinsin ab . 

α β α β 

β α 

Α 

B 

C 

N 

M 

a 

b 

θ 

θ 
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By the Sine Rule, 
A

B

a

b

sin

sin
= , so that   AB sinsinsinsin β=α  

But ),(90and)(90 oo θ−β−=θ+α−= BA so 

),cos(sin)cos(sin θ+αβ=θ−βα  

which quickly yields      ).cot(cottan
2
1 β−α=θ   In our particular example, this is  

1.20),13(tan o

2
1 =θ−=θ    If you wish, you could work out the forces at A and B in 

terms of the weight of the rod. 

 

47. 
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   I have drawn above the three forces on the rod.  The forces at the ends of the rod each 

make an angle λ to the normal to the surface, where ,tan µ=λ  and the three coplanar 

forces, being in static equilibrium, are concurrent at a point.  I have also introduced the 

angle Φ, given by ./cos al=Φ   All we have to do is to find θ in terms of λ and Φ  - that 

is to say, in terms of µ and ./ al  

    Fortunately I found the following formula for a triangle in an old geometry book: 

)cot(cotcot
2
1 β−α=γ  

 

 

 

 

 

 

 

 

I’ll leave you to see if you can derive it.  The book actually gave a formula for a more 

general case in which the base of the triangle isn’t divided equally.   For the case 

 

 

 

 

 

 

 

 

the formula is         β−α=γ+ cotcotcot)1( xx .   

β 

α 

γ 
////    

////    

β 

α 

γ 

x 

1 
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You can use this in various problems in geometric optics, where you are trying to find 

relations between object distance, image distance and radius of curvature or focal length.  

However, for this problem, we need only the simpler formula, where the base of the 

triangle is equally divided. 

On applying the simpler formula to our present problem we obtain 

[ ],)cot()cot(tan
2
1 λ+Φ−λ−Φ=θ  

and the problem is solved. 

 

 

   Below, I illustrate some examples.  Going from left to right we have a 

short )2.0/( =al , a medium )4.0/( =al  and a long )6.0/( =al rod.  Going 

 from top to bottom we have a slippery )5.0( =µ , a medium )0.1( =µ  and a 

sticky )5.1( =µ surface. 

  Inside each drawing, I tabulate   

o

/

θ

µ

al

 

 

The long )6.0/( =al rod will rest vertically for any 33.1>µ .  But, while it will not slip, 

the equilibrium is no longer stable, and the rod will tip after an infinitesimal 

counterclockwise displacement.    
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48.  If you do the problem by any of the three methods shown in Chapter 9 Section 9.4, 

i.e. by equilibrium of forces, or by potential energy considerations, or by virtual work, 

you will arrive at 

,0)21(2)42( 2 =µ+−µ−µ+ cc  

where θ=
2
1cosc  and   ./ Mm=µ   Check by putting 

10
1=µ  to verify that this becomes  

0612 2 =−− cc  as in Chapter 9.    

    

   The solution for c (written in a form that is easy for computation) is  

 

)21(2

)98(2

µ+

µ+µ+±µ
=c  

 

The + sign gives the stable solution; the − sign gives the unstable solution.  I’ll deal here 

only with the stable solution.  I’ll leave you, the reader, to deal with the unstable solution. 

For 
10
1=µ , this gives 

4
3=c  and hence θ  =  82

o
 49' as in Chapter 10.   

 

   Here is a graph of θ versus m/M.    If m is very small, the rod hangs almost vertically.  

If m is very large, the rod is pulled almost horizontal. 
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49. 
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Before we start, in what direction shall be draw the force R?  Easy! - if three coplanar 

forces are in equilibrium that must be concurrent at a point.   That’s how I have drawn it.  

Now let’s start. 

(a)   By geometry, the angles θ and 2θ are as shown.  The perpendicular distance from A 

to the line of action of the force F is therefore θ2sin3a , and to the line of action of the 

force Mg is θsin2a .  Therefore 

θθ=θ=θ cossin62sin3sin2 TaTaMga  

Therefore          .sec
3
1 θ= MgT  

 

The vertical component of R, which we are calling F, the frictional force, is given by 

 

.)cossec1(cos
3
2

3
1 MgMgTMgF =θθ−=θ−=  

The horizontal component of R, which we are calling N, the normal reaction of the wall 

on the rod, is given by 

.tansinsecsin
3
1

3
1 θ=θθ=θ= MgMgTN  

And    .sec3tan4tan 2

3
12

3
12

9
1

9
422 θ+=θ+=θ+=+= MgMgMgNFR  

 

(b)   If the rod is in limiting static equilibrium, then  θ==µ cot2
N

F
 and therefore 

µ
=θ

2
tan , 

and the other trigonometric ratios are calculated from 

 

      

 

 

 

 

 

It quickly follows that 

µ 

θ 

2 

24 µ+  
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µ

µ+
=

µ
==

µ

µ+
=

3

12

3

2

3

4 2

3
2

2
Mg

RNMgF
Mg

T   

 

   Here are graphs of θ and the four forces versus µ and θ, and the four forces versus θ.  

Are they at least qualitatively what you would expect?   For example, no force, however 

great, is going to hold the rod horizontally if the coefficient of friction is zero..  That is 

why all the forces go to infinity as θ goes to 90º.  Or again, is it obvious to you that the 

frictional force F (the vertical component of R) is constant and independent of θ or of µ?  

It is not immediately obvious to me.  Think about it. 
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   (c)   Now let us do the problem again, using the principle of virtual work.  Here is the 

drawing again, except that I have added the points D'andC' , being the horizontal 

projections of C and D on to the wall, and I have drawn the horizontal and vertical 

components, N and F of R. 
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   We note the following lengths: 

 

θ=

θ=

θ=

θ=

sin6HA

sin3DD'

cos4HC'

cos3HD'

a

a

a

a

 

 

   If  θ were to increase by δθ,  HD' would increase by  θδθ− sin3a . 

   If  θ were to increase by δθ,  HC' would increase by  θδθ− sin4a . 

   If  θ were to increase by δθ,  DD' would increase by  θδθ+ cos3a . 

   If  θ were to increase by δθ,  HA would increase by  θδθ− sin6a . 

 

N would do no work. 

The work done by F would be        θδθ+ sin6aF  

The work done by Mg would be                                                 θδθ− sin4aMg  

The work done by the horizontal component of T would be    

                        θδθθ−=θδθ×θ− cossin3cos3sin aTaT  

The work done by the vertical     component of T would be    

                        θδθθ+=θδθ×θ+ cossin3sin3sin aTaT  

 

 

The total work done would be θδθ+ sin6aF   θδθ− sin4aMg . 

 

Equate this to zero to obtain MgF
3
2= . 

 

The remaining forces are then easily obtained by conventional methods. 

 

It is interesting to note that T does no work.  (The length of the string is constant.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 103 

50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The length of the blue line is    θ+θ= seccsc 21 wwl  

 

By calculus, this is least for 3
2

1tan
w

w=θ  . 

The ladder cannot be longer than this. 

 

For ft8andft6 21 == ww , θ  =   42º.257, 

from which we find that the ladder cannot be longer than  19 ft  8.7 in. 

 

 

w1  =  6 ft 

w2  =  8 ft 

θ 

w2secθ 

w1cscθ 
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51.  All we have to do is to solve the two equations in λ1 and λ2 embedded in the 

paragraph following equation 11.5.26 in Chapter 5, namely: 

 

( )
t=

λ−λ
λλ

12

12 /ln
                                              (1) 

 

and   max

2

1

2

1

12

021 12

1

12

2

v=


























λ

λ
−









λ

λ

λ−λ

λλ λ−λ
λ

λ−λ
λ

x
,    (2) 

where  x0  =  3 m,   t  =2  s,   and vmax  =  0.5  m s
−1

, and recall how λ1 and λ2 are related 

to ω0 and γ.  
 
I have found easier equations to solve than these two.  This is how I tried 

 

Let 
2

1

λ
λ

=x    and  2λ=y .    (The symbol x has nothing to do, of course, with the 

symbol x.)   The equations then become 

 

y
x

x
t=

− 1

ln
      (3) 

         max
11

1

0

1
vxx

x

xy x

x

x =













−

−
−−x

 ,   (4) 

 

and hence, by elimination of y:  

 

0
)1(

ln
)( 11

1

2
=+














−

−
= −−

C
x

x

x xx
x

xx
xf ,   (5) 

 

where  
3
1

0

max ==
x

t
C

v
.      

 

To make use of the Newton-Raphson process, we need )(' xf , which is not the easiest 

derivative in the world.  I found: 
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  (6) 

 

Perhaps this can be simplified, or it may be easier just to type it directly into a computer. 

 

For the Newton-Raphson process we need a first guess.  On looking at equations 11.5.19, 

reproduced here: 

 

    ( ) ( ) ,, 2
0

2

2
1

2
1

2
2
0

2

2
1

2
1

1 ω−γ+γ=λω−γ−γ=λ                                11.5.19 

 

we see that x is between 0 and 1.  With a first guess of 0.5, I found that, to attain a 

precision of one part in 10
7
, I needed 24 iterations (a most unusually large number for 

Newton-Raphson iteration) to reach x = 0.409 396.  A better first guess of 0.4 was not 

much better (21 iterations) and a stupid first guess of 0.9 reached the same answer in 28 

iterations. 

 

Now, from equation (3) we find y = 0.756 067  s
−1

. 

 

We recall that y = λ1 and 21 / λλ=x  , so that 

 
1

2
1

1 s067756.0,s531309.0 −− =λ=λ    (7) 

 

We soon find, from equations 11.5.19, that  21021 and λλ=ωλ+λ=γ  so that 

 

 1s598065.1 −=γ   and   .s762483.0 1
0

−=ω  

 


