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CHAPTER 22 

DIMENSIONS 

 

22.1   Mass, Length and Time 

 

   Any mechanical quantity can be expressed in terms of three fundamental quantities, 

mass, length and time.  For example, speed is a length divided by time.  Force is mass 

times acceleration, and is therefore a mass times a distance divided by the square of a 

time.   

 

   We therefore say that [Force] = MLT
−2

.  The square brackets mean: “The dimensions of 

the quantity within”.    The equations indicate how force depends on mass, length and 

time.  We use the symbols MLT (not in italics) to indicate the fundamental dimensions of 

mass, length and time.  In the above equation, MLT
−2

 are not enclosed within square 

brackets; it would make no sense to do so. 

 

  We distinguish between the dimensions of a physical quantity and the units in which it 

is expressed.  In the case of MKS units (which are a subset of SI units), the units of mass, 

length and time are the kg, the m and the s.  Thus we could say that the units in which 

force is expressed are kg m s
−2

, while its dimensions are MLT
−2

. 

 

   For electromagnetic quantities we need a fourth fundamental quantity.  We could 

choose, for example, quantity of electricity Q, in which case the dimensions of current 

are QT
−1

.  We do not deal further with the dimensions of electromagnetic quantities here.  

Further details are to be found in my notes on Electricity and Magnetism, 

http://orca.phys.uvic.ca/~tatum/elmag.html 

 

   To determine the dimensions of a physical quantity, the easiest way is usually to look at 

the definition of that quantity.  Most readers will have no difficulty in understanding that, 

since work is force times distance, the dimensions of work (and hence also of energy) are 

ML
2
T

−2
 .   A more challenging one would be to find [dynamic viscosity].  One would 

have to refer to its definition (see Chapter 20) as tangential force per unit area per unit 

transverse velocity gradient. 

   

Thus [dynamic viscosity]   =   .TML
LT

L
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22.2   Table of Dimensions 

 

   I supply here a table of dimensions and MKS units of some mechanical quantities.  

Some are obvious and trivial.  Others might be less so, and readers to whom this topic is 

new are encouraged to derive some of them from the definitions of the quantities 

concerned.  Let me know (jtatum at uvic.ca) if you detect any mistakes. 
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   I don’t know whether angle is a dimensionless or a dimensioned quantity.  I can 

convince you that it is dimensionless by reminding you that it is defined as a ratio of two 

lengths.  I can convince you that it is dimensioned by pointing out that it is necessary to 

state the units (e.g. radians or degrees) in which it is expressed.  This might make for an 

interesting lunchtime conversation 

 

Mass     M   kg          

Length     L   m    

Time     T   s 

Density    ML
−3 

  kg m
−3  

   

Speed     LT
−1

   m s
−1

    

Acceleration    LT
−2   

m s
−2    

Force     MLT
−2   

kg m s
−2

 N
  

Work, Energy, Torque  ML
2
T

−2  
kg m

2
 s

−2 
J,  N m

  

Action     ML
2
T

−1  
kg m

2
 s

−1 
J s  

Rotational inertia   ML
2
   kg m

2     

Angular speed           T
−1

   s
−1  

rad s
−1

 

Angular acceleration   T
−2

   s
−2  

rad s
−2

  

Angular momentum   ML
2 

T
−1  

kg m
2
 s

−1 
J s

  
 

Pressure, elastic modulus  ΜL
−1Τ−2  

kg m
−1

 s
−2

 Pa
   

Gravitational constant   M
−1

L
3
T

−2
  kg

−1
 m

3
 s

−2 
N m

2
 kg

−2 
 

Dynamic viscosity   ML
−1

T
−1  

kg m
−1

 s
−1

 dekapoise
 

 

Kinematic viscosity   L
2
T

−1   
m

2
 s

−1   
  

Force constant    MT
−2

    kg s
−2

  N m
−1

      

Torsion constant   ML
2
T

−2  
kg m

2
 s

−2
         N m rad

−1 
 

Surface tension   MT
−2   

kg s
−2 

 N m
−1

 

Schrödinger wavefunction Ψ             L−3/2
T

−1/2  
m

−3/2
s

−1/2  

Schrödinger wavefunction ψ              L−3/2   
m

−3/2 
 

 

    
 

 

22.3   Checking Equations 

 

   When you are doing a complicated calculation involving difficult equations connecting 

several physical quantities, you must, routinely, check the dimensions of every line in 

your calculation. If the equation does not balance dimensionally, you know immediately 

that you have made a mistake, and the dimensional imbalance may even give you a hint 

as to what the mistake is.  If the equation does balance dimensionally, this, of course, 

does not guarantee that it is correct - you may, for example, have missed a dimensionless 

constant in the equation. 
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    Suppose that you have deduced (or have read in a book) that the period of oscillations 

of a torsion pendulum is 
c

I
P π= 2 , where I is the rotational inertia and c is the torsion 

constant. You have to check to see whether the dimensions of the right hand side are 

indeed that of time.   We have   
22

2

TML

ML
−

=








c

I
, which does indeed come to T, 

and so the equation balances dimensionally. 

 

 

22.4   Deducing Relationships 

 

 i.  We may suppose that the period P of a simple pendulum depends upon its mass m, its 

length l, and the gravitational acceleration g.  In particular we suppose that the period is 

proportional to some power α of the mass, some power β of the length, and some power γ 

of the gravitational acceleration.  That is  

 

.γβα∝ glmP  

 

Both sides must have the same dimension - namely T. 

 

That is     T][ =γβα glm  

 

That is     M
α
L

β
(LT

−2
)
γ
   =   T 

 

We equate powers of M, L and T to get three equations in α, β, γ: 

 

,12,0,0 =γ−=γ+β=α  

 

 with solutions 
2
1

2
1 ,,0 −=γ=β=α , which shows that  

 

      ,2
1

2
10 −

∝ glmP   or  .
g

l
P ∝  

 

ii.   Here’s another:  

The torque τ required to twist a solid metallic cylinder through an angle 

θ is proportional to θ :             θ=τ c  . 

 

c is the torsion constant.  How does c depend upon the length l and  

radius a of the cylinder, its density ρ and its shear modulus η? 

 

   There is an immediate difficulty, in that we have four quantities to 

consider −   l, a, ρ and η, yet we have only three dimensions  − 

θ 

τ 



 4 

L, M , T to deal with. Hence we shall have three equations in four  

unknowns.  Further, two of the quantities, l  and a have similar  

dimensions, which adds to the difficulties. 

 

   In cases like this we may have to make a sensible assumption about one of the 

quantities.  We may, for example, find it easy to accept that, the longer the cylinder, the 

easier it is to twist, and we may make the assumption that the torsion constant is inversely 

proportional to the first power of its length.  Then we can suppose that 

 
γβα ηρ∝ acl  

in which case 

  

[cl]   h  [ γβα ηρa ] 

 

That is                                ML
2
T

−2
L   h    L

α (ML
−3

)
β
(ΜL

−1Τ−2
)
γ 

 
Equate the powers of M, L and T: 

 

.22;33;1 γ−=−γ−β−α=γ+β=  

This gives α  =   4,   β  =  0,    γ  =   1,  and hence  .
4

l

a
c

η
∝  

 

iii.  How does the orbital period P of a planet depend on the radius of its orbit, the mass 

M of the Sun, and the gravitational constant G? 
 

Assume    γβα∝ aMGP  

 

It is left to the reader to show that      
GM

a
P

3

∝ . 

 

 

iv.   A sphere of radius a moves slowly at a speed v  through a fluid of density ρ and 

dynamic viscosity η.   How does the viscous drag F depend upon these four variables? 

 

Four variables, but only three dimensions, and hence three equations!  What to do? 

If you have better insight than I have, or if you already know the answer, you can assume 

that it doesn’t depend upon the density.  I haven’t got such clear insight, but I’d be 

willing to suppose that the viscous drag is proportional to the first power of the dynamic 

viscosity.  In which case I’d be happy to assume that 

 

γβαρ∝
η

va
F
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Then    .)LT()ML(L
TML

MLT 13

11

2
γ−β−α

−−

−

≡  

 

Equate the powers of M, L and T: 

 

.1;32;0 γ−=−γ+β−α=β=  

 

This gives α  =   1,   β  =  0,    γ  =   1,  and hence  v.aF η∝  

 

 

 

22.5   Dimensionless Quantities 

 

are used extensively in fluid dynamics.  For example, if a body of some difficult shape, 

such as an aircraft, is moving through a fluid at speed V, it will experience all sorts of 

forces, external and internal.  The ratio of the internal forces to the external forces will 

depend upon its speed, and the viscosity of the fluid, and the size of the body.  By “size” 

of a body of “difficult” shape we could take the distance between two defined points on 

the body, such as its top and bottom, or its front and back, or its greatest width, or 

whatever. Call that distance l.  But the ratio of the internal to the viscous forces is 

dimensionless, so it must depend on some combination of the viscosity, speed V and 

linear size l that is dimensionless.  Since V and l do not contain M in their dimensions, the 

viscosity concerned must be the kinematic viscosity ν, which is the ratio of dynamic 

viscosity to density and does not have M in its dimensions.  So, what combination of ν, V 

and l is dimensionless? 

 

   It is easy to see that 
ν

Vl
  -  or any power of it, positive, negative, zero, integral, 

nonintegral  - is dimensionless.  
ν

Vl
 is called the Reynolds number, and is usually given 

the symbol Re.  It is supposed that if you make a small model of the aircraft (or whatever 

the body is) and move it through some fluid and some speed, the ratio of internal to 

viscous forces in the model will be the same as in the real thing provided that the 

Reynolds numbers in the model and in the real thing are the same. 

 

There are oodles of similar dimensionless numbers used in fluid dynamics, such as 

Froude’s number and Mach number, but this example of Reynolds number should give 

the general idea. 

 

 

22.6   Different Fundamental Quantities 

 

   We stated at the beginning of this chapter that any mechanical quantity could be 

expressed in terms of three fundamental quantities, mass, length and time.  But there is 

nothing particularly magic about these quantities.  For example, we might decide that we 
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could express any mechanical quantity in terms of, say, energy E, speed V and angular 

momentum J.  We might then say that the dimensions of area could be expressed as 

.JVE 222−   (Verify this!) 

 

   While agreeing that such a system might be possible, you might feel that it would be 

totally absurd and there is no point in reading further. 

 

   But stop!  Such a system is not only possible, but it is normally and routinely used in 

the field of high-energy particle physics.   That, perhaps, is a surprise, but, if you are 

thinking of taking an interest in particle physics, read on. 

 

   The units generally used in particle physics to express the fundamental quantities 

energy, speed and angular momentum are GeV  (or MeV, or TeV , etc) for energy, the 

speed of light c for speed, and the modified Planck constant ħ for angular momentum.  

There are often referred to as “natural” units, the speed of light being a “natural” unit of 

speed and ħ being a “natural” unit for angular momentum, whereas metre, kilogram and 

second are not so “natural” in this sense as they are “man-made”.  It is true that a GeV is 

not particularly “natural”, but at least a system with GeV, c and  ħ as fundamental 

quantities is certainly more “natural” than metre-kilogram-second. 

 

  In any case, the dimensions of mass in this system are EV
−2

.  (You can see this 

immediately, for example from Einstein’s famous equation E = mc
2
.)  The units used in 

this system are GeV/c
2
.   Thus the rest mass of a proton is 0.9383 GeV/c

2
, and the rest 

mass of an electron is 0.5110 MeV/c
2
.   One way to interpret this, if you like, is to say 

that the rest-mass energy of a proton (i.e. its 2
0cm  ) is 0.9383 GeV.  

 

  Likewise the dimensions of linear momentum are EV
−1

, and units in which it is 

expressed are GeV/c.   (You can see this, for example, if you look at the energy and 

momentum of a photon:  λ=ν= /, hphE , from which .
11

cE

p
=

νλ
= ) 

 

  Torque (which has the same dimensions as energy) is equal to rate of change of angular 

momentum, from which we see that time has dimensions E
−1

J and could be expressed in 

units of  ħ/GeV.  Alternatively you can see that [time] = ħ/GeV immediately from 

Planck’s equation .  ω= hE And speed is distance over time, so that we see that distance, 

or length, has dimensions E
−1

VJ, and hence units ħc/GeV. 

 

   Using data from the 2010 Particle Physics Booklet, I calculate as follows. 

 

Mass:       1 GeV/c
2
   =    1.782 661 76  % 10

−27
 kg 

 

Length:    1 ħc/GeV   =   1.973 269 63  %  10
−16

 m 

 

Time:                     1 ħ/GeV    =    6.582 118 99  %  10
−26

 s 
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Energy:               1 GeV       =     1.602 176 49  %  10
−10

 J 

 

Linear Momentum    1 GeV/c   =     5.344 285 50  %  10
−19

  kg m s
−1

 

 

 

I give here a table of the dimensions (in terms of EVJ) of the same quantities as in the 

table of page 2.   I dare say some of them are never likely to be needed, but some 

certainly will be needed, and, rather than predict which will be useful and which not, I 

might as well give them all.  The dynamic viscosity of water at room temperature is about  

10
−3

 kg m
−1

 s
−1

, or  10
−3

 dekapoise.  I cannot imagine anyone needing to know that the 

dynamic viscosity of water at room temperature is about  7.3 % 10
−18

 (GeV)
3
/(c

3
ħ

2
) , or 

that its surface tension is so many (GeV)
3
/(cħ)

2
  − but you never know. 

 

 

Mass     EV
−2

    GeV/c
2 

Length     E
−1

VJ    ħc/GeV 

Time     E
−1

J    ħ/GeV 

Density    E
2
V

−5
J

−3
   (GeV)

2
/(c

5
ħ

3
)  

Speed     V    c 

Acceleration    EVJ
−1    

GeV c/ħ 

Force     E
2
V

−1
J

−1   
(GeV)

2
/(cħ)

  

Work, Energy, Torque  E
  

  GeV
  

Action     J    ħ
     

Rotational inertia   E
−1

J
2    

ħ
2
/GeV

  
Angular speed    EJ    GeV ħ

 

Angular acceleration   E
2
J

2
    (GeV)

2
ħ

2
   

Angular momentum   J
    

ħ
 

   

Pressure, elastic modulus  E
4
V

−3
J

−3   
(GeV)

4
/(cħ)

3  

Gravitational constant   E
−2

V
5
J

    
c

5
ħ/(GeV)

2 

Dynamic viscosity   E
3
V

−3
J

−2   
(GeV)

3
/(c

3
ħ

2
)
 

Kinematic viscosity   E
−1

V
2
J

    
c

2
ħ/(GeV)   

Force constant    E
3
V

−2
J

−2
    (GeV)

3
/(cħ)

2
        

Torsion constant   E
    

GeV 

Surface tension   E
3
V

−2
J

−2    
(GeV)

3
/(cħ)

2  

Schrödinger wavefunction Ψ             E2
V

−3/2
J

−2   
(GeV)

2
/(c

3/2
ħ

2
) 

Schrödinger wavefunction ψ              E3/2
V

−3/2
J

−3/2   
(GeV)

3/2
/(c

3/2
ħ

3/2
)
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