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CHAPTER 21 

CENTRAL FORCES AND EQUIVALENT POTENTIAL  

 

21.1   Introduction 

 

When a particle is in orbit around a point under the influence of a central attractive force 

(i.e. a force )(rF  which is directed towards a central point, with no transverse 

component) it experiences, when referred to an inertial reference frame, a centripetal 

acceleration.  If, however, the system is described with respect to a co-rotating reference 

frame, there is no centripetal acceleration; rather, it appears as though an additional force, 

the centrifugal force, is pushing it away from the centre of attraction.  In the co-rotating 

frame, this force depends only on the distance of the particle from the centre of attraction, 

and it is therefore a conservative force – and, like any conservative force, it can be 

described by the negative of the derivative of a potential energy function.  When 

describing the motion with respect to the co-rotating frame, we must add this potential to 

any additional “real” potentials (such as originate from the gravitational fields of other 

bodies), to form an equivalent potential which constrains the motion of the particle.  An 

excellent example of this method is the analysis of the restricted three-body problem 

given in some detail in Chapter 16 of my notes on Celestial Mechanics 

(http://orca.phys.uvic.ca/~tatum/celmechs.html). But I deal first, by way of example, with 

some simpler problems involving central forces, in which we shall be able, by simple 

arguments, to deduce some basic characteristics of the motion. 

 

 

21.2   Motion Under a Central Force 

 

I consider the two-dimensional motion of a particle of mass m under the influence of a 

conservative central force F(r), which can be either attractive or repulsive, but depends 

only on the radial coordinate r.  Recalling the formula 2
θ− &&& rr for acceleration in polar 

coordinates (the second term being the centripetal acceleration), we see that the equation 

of motion is 

 

    .)(2 rFmrrm =θ− &&&      21.2.1 

 

This describes, in polar coordinates, two-dimensional motion in a plane.  But since there 

are no transverse forces, the angular momentum θ&
2

mr  is constant and equal to L, say.  

Thus we can write equation 21.2.1 as 

 

    .)(
3

2

mr

L
rFrm +=&&      21.2.2 

 

This has reduced it to a one-dimensional equation; that is, we are describing, relative to a 

co-rotating frame, how the distance of the particle from the centre of attraction (or 

repulsion) varies with time.  In this co-rotating frame it is as if the particle were subject 
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not only to the force F(r), but also to an additional force .
3

2

mr

L
  In other words the total 

force on the particle (referred to the co-rotating frame) is 
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L
rFrF +=     21.2.3 

 

Now F(r), being a conservative force, can be written as minus the derivative of a 

potential energy function, 
dr

dV
F −= .  Likewise, 
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L
is minus the derivative of  

.
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2
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L
  Thus, in the co-rotating frame, the motion of the particle can be described as 

constrained by the potential energy function V', where 
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L
VV +=      21.2.4 

 

This is the equivalent potential energy.   If we divide both sides by the mass m of the 

orbiting particle, this becomes 
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h
+Φ=Φ      21.2.5 

 

Here h is the angular momentum per unit mass of the orbiting particle,  Φ is the potential 

in the inertial frame, and 'Φ is the equivalent potential in the corotating frame. 

 

21.3   Inverse Square Attractive Force 

 

   This is dealt with in detail in Chapter 9 of my notes on Celestial Mechanics 

(http://orca.phys.uvic.ca/~tatum/celmechs.html).  Here we investigate some general 

properties of the motion. 

 

If ,then
2

r

GMm
V

r

GMm
F −=−= and hence 
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GMm
V +−=     21.3.1 

 

 

I sketch this in figure XXI.1.   The total energy (potential + kinetic) is constant 

(independent of r) and is greater than (or equal to) the potential energy.  If the total 

energy is less than zero, you can see from the graph that r has a lower (perihelion) and 

upper (aphelion) limit; this corresponds to an elliptic orbit.  But if the total energy is 
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positive, r has a lower limit, but no upper limit; this corresponds to a hyperbolic orbit.  If 

the total energy is equal to the minimum of V', only one value of r is possible, and the 

orbit is a circle. 
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FIGURE XVI.1
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21.4   Hooke’s Law 

 

We imagine a particle whirling around on the end of a spring, oscillating in and out as it 

does so.  The force constant of the spring is k, the force on the particle is −kr and the 

potential (elastic) energy is .2

2
1 krV =   The effective potential energy is therefore 
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L
krV +=      21.4.1 

 

I sketch this in figure XVI.2.   The total energy (potential + kinetic) is constant 

(independent of  r) and is greater than (or equal to) the potential energy.  The distance of 

the particle from the centre of attraction is bounded above and below.  The motion is a 

Lissajous ellipse, with the centre of attraction at the centre (not the focus) of the ellipse.  

The lower bound is the semi minor axis and the upper bound is the semi major axis. 

 

FIGURE XXI.1 
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FIGURE XVI.2

 
An inverse square force (e.g. a gravitational force, or a Coulomb’s law electrostatic force) 

and a Hooke’s law force (kx) are obvious examples of real forces in nature.  In what 

follows we shall investigate the behaviour of a particle under the influence of other force 

laws, such as inverse fourth power and inverse cube forces.  It is difficult to imagine 

whether such forces actually exist in nature (the field of an electric dipole falls off as the 

cube of the distance - but the field is not radial, and the force is not a central force), and 

to that extent much of what follows is an exercise in mathematics more than in physics.  

But inverse square and Hooke’s law forces are certainly not the only forces to operate in 

nature.  What is the force law, for example, for the residual strong interactions between 

nucleons in an atomic nucleus, or the force law between the quarks within a nucleon?  It 

will be worthwhile investigating the simpler hypothetical forces to be discussed here in 

order to understand the principles and methods that may be applicable to a more difficult 

problem. 
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FIGURE XXI.2 
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21.5   Inverse fourth power attractive force 

 

If ,then
3

34
r

a
V

r

a
F −=−= and hence 
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a
V +−=     21.5.1 

 

 

I sketch this in figure XXI.3.   The total energy (potential + kinetic) is constant 

(independent of r) and is greater than (or equal to) the potential energy.  If the total 

energy is negative, the distance r has an upper limit, but the only lower limit is the origin, 

or the centre of attraction, and particle will eventually end there.  If the total energy is 

greater than the maximum of V', the motion is completely unbounded.  If the total energy 

is positive but less than V'max, the motion depends on the initial value of r.  For small r the 

motion is bounded above, and the particle will eventually end at the origin.  For large r, 

there is a minimum distance to which the particle can approach the origin, and the 

particle will eventually wander off to infinity.  For total energy in this range, there is a 

range of r that is not possible. 
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FIGURE XXI.3 
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21.6  A general central force 

 

   Let us suppose that we have a particle that is moving under the influence of a central 

force )(rF .   The equations of motion are 

 

Radial:    )()( 2 rFrrm =θ− &&&      21.6.2 

Transverse:   .02 =θ+θ &&&& rr      21.6.3 

 

These can also be written 

)(2 rarr =θ− &&&      21.6.4 

.2 hr =θ&       21.6.5 

 

Here a is the radial force per unit mass (i.e. the radial acceleration) and h is the (constant) 

angular momentum per unit mass.  [If you are unsure of why equations 21.6.3 and 21.6.5 

are the same, differentiate equation 21.6.5 with respect to time.] 

 

   These are two simultaneous equations in tr ,, θ .  In principle, if we could eliminate t 

between them, we would obtain a relation between r and θ, which would tell us the shape 

of the path pursued by the particle.  In Chapter 9 of my Celestial Mechanics notes we do 

this for the gravitational case, and we find that the path is an ellipse of the form 

θ+
=

cos1 e

l
r .   Or perhaps we could eliminate r and hence find out how the angle 

θ  changes with time.  Or again we might be able to eliminate θ and hence get a relation 

telling us how r varies with the time.  Yet again we might be told the shape of the path 

)(θr , and asked to find the force law ).(rF   Or again, rather than the force, we might be 

given the form of the potential energy )(rV , which is related to the force by 

./ drdVF −=   The  potential Φ is the potential energy per unit mass, and drd /Φ−  is 

the radial force per unit mass - i.e. it is the radial acceleration )(ra of the orbiting particle.  

The angular momentum of the particle, which is constant, is θ= &2mrL , and the angular 

momentum per unit mass is ,2
θ= &rh  which is twice the rate at which the radius vector 

sweeps out area. 

 

   We might also remember that, if we are given the potential energy V or the potential Φ 

in an inertial frame, we might also want to work in a co-rotating frame, making use of the 

equivalent potential energy  
2

2

2
'
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L
VV +=   or the equivalent potential 

.
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r

h
+Φ=Φ     
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  One last thing to bear in mind before starting any problems of this class.  It turns out 

that, very often, a change of variable ru /1=  turns out to be useful. Conservation of 

angular momentum then takes the form ./ 2 hu =θ&    Also  
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           21.6.7 

 

 

Equations 21.5.4 and 21.6.5 now become 

 

)(
1 2

2

2
22

ra
udt

ud
uh −=θ+ &     21.6.8 

and     .2hu=θ&      21.6.9 

 

We can now easily eliminate the time which was one of our aims: 

 

).(32

2

2
22

rauh
d

ud
uh −=+

θ
     21.6.10 

 

[As ever, check the dimensions.]  This equation, which does not contain the time, when 

integrated will give us the ),( θr equation to the path. 

 

   With these remarks in mind, let us try a few problems.  For example: 

 

21.7   Inverse cube attractive force 

 

    A particle moves in a field such that the attractive force on it varies inversely as the 

cube of the distance from a centre of attraction.   What is the shape of the path? How does 

the angle θ vary with time?   

 

   Let’s suppose that the radial acceleration is ./)( 3232 ukrkra −=−=    (I want the 

coefficient of 1/r
3
 to be negative, so that the force is attractive, which is why I have 

written the coefficient as .2k−    Besides, the dimensions of k are then L
2
T

−1
, which are 

the same as those of h, the angular momentum per unit mass, which helps to make the 

algebra simple.)  The differential equation to the path (equation 21.6.10) is then 
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3232

2

2
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ukuh
d

ud
uh =+

θ
 or 

.32

2

2
2

ukuh
d

ud
h =+

θ
    21.7.11 

 

That is,   .
2

22

2

2

u
h

hk

d

ud −
=

θ
     21.7.12 

 

 

 

The form of the motion evidently depends on whether 22 hk >  (a strongly attractive 

force, or a small angular momentum), or if 22 hk < (a weak force, or a large angular 

momentum.)   If we start the particle rolling with just the right amount of angular 

momentum ( 22 hk = ), there will evidently be zero radial acceleration, and the particle 

will move in a circle. 

 

Before integrating equation 21.7.12, let us look at the equivalent potential.   For 
32 /)( rkra −= , the potential in the inertial frame is 22

2
1 / rk−=Φ  provided we take 

the potential at infinity to be zero.  The equivalent potential is then (see equation 21.2.5) 
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r

k
+−=Φ       21.7.13 

 

We see that, if ,22 hk = the potential is zero and independent of distance.  If 22 kh < , 

the equivalent potential is negative, increasing to zero as r → ∞, and the particle 

accelerates towards the centre of attraction.   If 22 kh > , the potential is positive, 

decreasing to zero as r → ∞, and the particle accelerates away from the centre of 

attraction.  This sounds like a contradiction, but what is happening is that 22 kh >  means 

that the particle has initially been given a large angular momentum, and, in the corotating 

frame, the centrifugal force is larger than the attractive force. 

 

If  22 kh < , the equation of motion (equation 21.7.12) is 

 

,2

2

2

uc
d

ud
=

θ
     21.7.14 

 

where     .
2

22
2

h

hk
c

−
=     21.7.15 
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The general solution is  

 
θ−θ

+=
cc BeAeu     21.7.16 

 

If the initial conditions are that at 0,,,0 00 =
θ

===
d

du
uurrt  (this last condition 

means that the particle was launched in a direction at right angles to the radius vector, 

this solution becomes 

 

     .cosh0 θ= cuu     21.7.17 

 

That is,     .hsec0 θ= crr      21.7.18 

 

 

I have drawn this below for 1.0=c ;  that is, for .05.1 hk ≈    And for 5.0=c ;  that is, for 

,22.1 hk ≈  a smaller angular momentum. 

 

 

FIGURE XXI.4

c = 0.1
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FIGURE XXI.5

c = 0.5

 
 

   We also need to consider the case 22 kh > , in which case the general solutuion is of 

the form θ+θ= cBcAu sincos .  Alas, I haven’t had the energy to do this yet.  Perhaps 

some view can beat me to it, and let me know at jtatum at uvic.ca 


