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CHAPTER 19 

THE CYCLOID 

 

19.1    Introduction 
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Let us set up a coordinate system Oxy, and a horizontal straight line y = 2a.  We imagine a circle of 

diameter 2a between the x-axis and the line y = 2a, and initially the lowest point on the circle, P, 

coincides with the origin of coordinates O.  We now allow the circle to roll counterclockwise 

without slipping on the line y = 2a, so that the centre of the circle moves to the right.  As the circle 

rolls on the line, the point P describes a curve, which is known as a cycloid. 

 

When the circle has rolled through an angle 2θ, the centre of the circle has moved to the right by a 

horizontal distance 2aθ, while the horizontal distance of the point P from the centre of the circle is 

a sin ,2θ  and the vertical distance of the point P below the centre of the circle is  a cos .2θ   Thus the 

coordinates of the point P are 

 

     x a= +( sin ) ,2 2θ θ      19.1.1 

 

and      y a= −( cos ).1 2θ      19.1.2 

 

These are the parametric equations of the cycloid.  Equation 19.1.2 can also be written 

 

     y a= 2 2sin .θ       19.1.3 
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Exercise:  When the x-coordinate of P is 2.500a, what (to four significant figures) is its y-

coordinate? 

 

Solution:  We have to find 2θ by solution of  2 2 2 5θ θ+ =sin . . By Newton-Raphson iteration 

(see Chapter 1 of the Stellar Atmospheres notes in this series) or otherwise, we find 2θ = 0.931 599 

201 radians, and hence y = 0.9316a.  

 

 

19.2   Tangent to the Cycloid 

 

The slope of the tangent to the cycloid at P is dy/dx, which is equal to ( / ) / ( / ),dy d dx dθ θ  and these 

can be obtained from equations 19.1.1 and 19.1.2. 

 

Exercise: Show that the slope of the tangent at P is tan θ.  That is to say, the tangent at P makes an 

angle θ with the horizontal. 

 

Having done that, now consider the following: 

 

Let A be the lowest point of the circle.  The angle ψ that AP makes with the horizontal is given by 

tan .ψ
θ

=
−

y

x a2
 

 

Exercise:  Show that ψ  =  θ.  Therefore the line AP is the tangent to the cycloid at P; or the tangent 

at P is the line AP. 

 

 

19.3   The Intrinsic Equation to the Cycloid 

 

An element ds of arc length, in terms of dx and dy, is given by the theorem of Pythagoras: 

( ) ( )( ) ,
2/122

dydxds +=  or, since x and y are given by the parametric equations 19.1.1 and 19.1.2, 

by 

.

2/1
22

θ






















θ
+









θ
= d

d

dy

d

dx
ds   And of course we have just shown that the intrinsic coordinate ψ 

(i.e. the angle that the tangent to the cycloid makes with the horizontal) is equal to θ. 

 

Exercise:   Integrate ds (with initial condition s = 0,  θ = 0) to show that the intrinsic equation to the 

cycloid is 

     s a= 4 sin .ψ       19.3.1 

 

Also, eliminate ψ  (or θ) from equations 19.3.1 and 19.1.2 to show that the following relation holds 

between arc length and height on the cycloid: 

 

     s ay
2 4= .      19.3.2 
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19.4   Variations 

 

In sections 19.1,2,3, we imagined that the cycloid was generated by a circle that was rolling 

counterclockwise along the line y = 2a.  We can also imagine variations such as the circle rolling 

clockwise along  y = 0, or we can start with P at the top of the circle rather than at the bottom.  I 

summarise in this section four variations.  The distinction between ψ and θ is as follows.  The angle 

that the tangent to the cycloid makes with the positively-directed x-axis is ψ; that is to say, 

.tan/ ψ=dxdy   The circle rolls through an angle 2θ.  There is a simple relation between ψ and θ, 

which is different for each case. 

 

In each figure, x and y are plotted in units of a.  The vertical height between vertices and cusps is 

2a,  the horizontal distance between a cusp and the next vertex is πa, and the arc length between a 

cusp and the next vertex is 4a. 

 

I.   Circle rolls counterclockwise along  y = 2a. P starts at the bottom. The cusps are up.  A vertex is 

at the origin. 

Figure XIX.2. 

x a= +( sin )2 2θ θ      19.4.1 

     y a= 2 2sin θ       19.4.2 

     θ= sin4as       19.4.3 

     ays 82 =       19.4.4 

     ψ = θ .                 19.4.5 
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II.   Circle rolls clockwise along  y = 0.  P starts at the bottom. The cusps are down.  A cusp is at the 

origin. 

Figure XIX.3. 

 

  

 

x a= −( sin )2 2θ θ      19.4.6 

     y a= 2 2sin θ       19.4.7 

     )cos1(4 θ−= as      19.4.8 

     )(82 syas −=      19.4.9 

     ψ  =  90
o
  −  θ.      19.4.10 
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III.  Circle rolls clockwise along y = 0. P starts at the top.   The cusps are down. A vertex is at x = 0. 

Figure XIX.4. 

 

x a= +( sin )2 2θ θ      19.4.11 

     θ= 2cos2ay       19.4.12 

     θ= sin4as       19.4.13 

     )2(82 yaas −=      19.4.14 

     ψ  =  180
o
  −  θ.     19.4.15 
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IV.   Circle rolls counterclockwise along y = 2a.  P starts at the top.  The cusps are up.  A cusp is at 

x = 0. 

Figure XIX.5. 

 

x a= −( sin )2 2θ θ      19.4.16 

     θ= 2cos2ay       19.4.17 

     )cos1(4 θ−= as      19.4.18 

     0)2(882 =−+− yaaass     19.4.19 

     ψ =   90
o
  +  θ .     19.4.20 
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19.5   Motion on a Cycloid, Cusps Up 

 

We shall imagine either a particle sliding down the inside of a smooth cycloidal bowl, or a bead 

sliding down a smooth cycloidal wire, figure XIX.6. 
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We shall work in intrinsic coordinates to obtain the tangential and normal equations of motion.  

(For a reminder of the use of intrinsic coordinates, they were used briefly, for example, in Section 

7.3)   These equations are, respectively: 

 

      

     ψ−= sings&&      19.5.1 

 

and     
m

R mg
v

2

ρ
ψ= − cos .    19.5.2 

 

Here R is the normal (and only) reaction of the bowl or wire on the particle and ρ is the radius of 

curvature.  The radius of curvature is ds/dψ, which, from equation 19.3.1, (or equations 19.4.3 and 

19.4.5) is  

 

     ρ ψ= 4a cos .      19.5.3 
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From equations 19.3.1 and 19.5.1 we see that the tangential equation of motion can be written, 

without approximation: 

 

     .
4

s
a

g
s −=&&       19.5.4 

 

This is simple harmonic motion of period 4π a g ,  independent of the amplitude of the motion.  

This is the isochronous property of the cycloid.  Likewise, if the particle is released from rest, it 

will reach the bottom of the cycloid in a time π a g , whatever the starting position. 

 

Let us see if we can find the value of R where the generating angle is ψ.  Let us suppose that the 

particle is released from rest at a height y0 above the x-axis (generating angle = ψ0); what is its 

speed v when it has reached a height y (generating angle ψ)?  Clearly this is given by 

 

    1
2

2

0m mg y yv = −( ) ,      19.5.5 

 

and, following equation 19.3.2, and recalling that θ  =  ψ,  this is 

 

    v
2

02 2 2= −ga(cos cos ) .ψ ψ     19.5.6 

 

On substituting this and equation 19.5.3 into equation 19.5.2, we find for R: 

 

       R
mg

= + −
2

1 2 2 2 0
cos

( cos cos ) .
ψ

ψ ψ     19.5.7 

 

 

19.6   Motion on a Cycloid, Cusps Down 

 

We imagine a particle sliding down the outside of an inverted smooth cycloidal bowl, or a bead 

sliding down a smooth cycloidal wire.  We shall suppose that, at time t = 0, the particle was at the 

top of the cycloid and was projected forward with a horizontal velocity v0.   See figure XIX.7. 

 

This time, the  equations of motion are  

 

     ψ= sings&&       19.6.1 

 

and     
m

mg R
v

2

ρ
ψ= −cos .    19.6.2 

 

By arguments similar to those made in Section19.5, we find that  

 

     .
4

s
a

g
s =&&       19.6.3 



 9 

 

 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

x

y
FIGURE IXX.7

 
 

 

The general solution to this is 

  

     s Ae Be
pt pt= + − ,      19.6.4 

 

where      p g a= ( ) .2      19.6.5 

 

With the initial condition given (at 0,0,0 v=== sst & ), we can find A and B and hence: 

 

    ( ).0

ptpt
ee

g

a
s

−−= v      19.6.6 

 

Again proceeding as in Section 19.5, we find for R: 

 

    R
m

a
ga= −

4
4 2 0

2

cos
( cos ) .

ψ
ψ v     19.6.7 

 

So – what happens? 
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If the constraint is two-sided (bead sliding on a wire) R becomes zero when cos / ( ) ,2 20

2ψ = v ga  

and thereafter R is in the opposite direction. 

 

If the constraint is one-sided (particle sliding down the outside of a smooth cycloidal bowl): 

 

1. If v0

2 4> ga , the particle loses contact at the moment of projection. 

 

2. If v0

2 4< ga , the particle loses contact as soon as cos / ( ) .2 20

2ψ = v ga   If v0 is very small (i.e. 

very much smaller than 2ga ),  this will happen when ψ = 45
o
; for faster initial speeds, contact 

is lost sooner. 

 

Example.  A particle is projected horizontally with speed v0 = 1 m s
−1

 from the vertex of the smooth 

cycloidal hill 
x a= +( sin )2 2θ θ       

     θ= 2cos2ay , 

 

where a = 2 m. Assuming that g = 9.8 m s
−2

, how long does it take to get halfway down the hill (i.e. 

to y = a)? 

 

We have to use equation 19.6.6.  With the numerical data given, this is  

 

    ( ).451754.0 565248.1565248.1 tt ees −−=  

 

We can find s from equation 19.4.12, which gives us s = 2.828427 m.    If we let ξ = e
t1565248. , we 

now have to solve 6 26099 1 6 26099 1 02. / , . .= − − − =ξ ξ ξ ξor   From this, ξ  =  6.41683 and 

hence t = 1.19 s. 

 

I leave it to the reader to calculate R at this time – and indeed to see whether the particle loses 

contact with the hill before then. Perhaps the fact that I got a positive real root for ξ means that we 

are all right and the particle is still in contact – but I wouldn't be sure of that.  I leave it to the reader 

to investigate further. 

     

 

 

19.7    The Brachystochrone Property of the Cycloid 

 

A small point.  The word is sometimes spelled brachistochrone, and I have no recommendation one 

way or the other.  For what it's worth, the only dictionary within easy reach of my desk has 

brachiopod and brachycephalic.  In any case, the word is derived from Greek, and means shortest  

time. 

 

The famous brachystochrone problem problem is this:  A smooth wire, which can be of any desired 

length, is to connect two points O and P;  P is at a lower level than O, but is not vertically below O.  

The wire is to be bent to a shape, and cut to a length, such that the time taken for a bead to slide 

down the wire from O to P is least. 
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It is not easy to prove that the required curve is a cusps-up cycloid; but it is quite reasonable to 

speculate or to guess that this might be so.  And, having speculated that it might be a cycloid, it is 

easy to verify that the required curve is indeed a cusps-up cycloid, the bead starting from rest at a 

cusp of the cycloid.  

 

A speculation might go something like this.  Generally one would expect that the further P is from 

O, the longer it will take for the bead to slide from O to P.  But, if O and P are connected with a 

cycloidal wire, the time taken to go from O to P does not increase with distance.  (See the 

isochronous property of the cycloid discussed in Section 19.5.)  Thus, as you increase the distance 

between O and P, the time taken to travel by any route other than the cycloidal one must take 

longer than the cycloidal route.  This argument may not sound like a rigorous proof, though it is 

enough to arouse our suspicions and to test whether it is correct. 

 

Since I am going to deal with a bead sliding downwards under gravity, I am going to find it 

convenient to set up our coordinate axes such that x increases to the right, and y increases 

downwards.  In that case, the parametric equations to a cusps-up cycloid, with the origin at a cusp, 

are 

 

     x a= −( sin ) ,2 2θ θ      19.7.1 

 

and     y a= 2 2sin θ       19.7.2 

 

− and these are the equations that we shall be testing. 

 

The time taken for the bead to travel a distance ds along the wire, while it is moving at speed v is 

ds/v.  In (x , y) coordinates, ds is 1 2+ y dx' , where y'  =  dy/dx. Also, the speed reached is related 

(by equating the gain in kinetic energy to the loss of potential energy) to the vertical distance y 

dropped by v = 2gy .   Thus the time taken to go from O to P is 

 

    .)',(
2

1'1

2

1 P

O

P

O

2

dxyyf
g

dx
y

y

g
∫∫ =

+
   19.7.3 

 

This is least (see Chapter 18 for a discussion of this theorem from the calculus of variations) for a 

function y(x) that satisfies 

 

     
d

dx

f

y

f

y

∂

∂

∂

∂'
.=       19.7.4 

 

We have:    f
y

y
=

+1 2'
,     19.7.5 
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∂

∂

f

y

y

y
= −

+( ' ) ,
/

/

1

2

2 1 2

3 2
     19.7.6 

 

and      
∂

∂

f

y

y

y y'

'

( ' )
.

/ /
=

+1 2 2 1 21
    19.7.7 

 

It is left for the reader to see whether equations 19.7.1 and 2 satisfy equation 19.7.4.   You should 

find that both sides of the equation are equal to ( ).sin24/1 42/3 θ− a   Thus our speculation is 

confirmed, and a cusps-up cycloid is indeed the curve that offers passage from O to P in the 

shortest time. 

 

 

 

19.8 Contracted and Extended Cycloids 

 

As in Section 19.1, we consider a circle of radius a rolling to the right on the line y = 2a.  The point 

P is initially below the centre of the circle, but, instead of being on the rim of the circle, its distance 

from the centre of the circle is r.  If r < a, the path described by P will be a contracted cycloid; if 

r a> ,  the path is an extended cycloid.  (I think there’s a case for using this nomenclature the other 

way round, but most authors seem to use “contracted” for r < a and “extended” for r > a.) 

 

It should not take long to be convinced, by arguments similar to those in Section 19.1,  that the 

parametric equations to a contracted or extended cycloid are 

 

     x a r= +2 2θ θsin      19.8.1 

 

and     y a r= − cos .2θ      19.8.2 

 

These are illustrated in figures XIX.8 and XIX.9 for a contracted cycloid with r = 0.5a and an 

extended cycloid with r = 1.5a. 
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19.9   The Cycloidal Pendulum 
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Let us imagine building a wooden construction in the shape of the cycloid 

       

     x a= −( sin )2 2θ θ      19.9.1 

   

     θ= 2cos2ay       19.9.2 

 

shown with the thick line in figure XIX.10. Now suspend a pendulum of length 4a from the cusp, 

and allow it to swing to and fro, partially wrapping itself against the wooden frame as it does so. If 

the arc length from the cusp to P is s, then the length of the “free” string is  4a − s, and so the 

coordinates of the bob at the end of the pendulum are 

 

θ−+θ−θ=ψ−−+θ−θ= sin)4()2sin2()180cos()4()2sin2( o saasaax       19.9.3 

and 

.cos)4(cos2)180sin()4(cos2 2o2 θ−−θ=ψ−−−θ= saasaay      19.9.4

  

P 

 

FIGURE XIX.10 
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(You will need to remind yourself of the exact meaning of ψ and also make use of equation 

19.4.20.)  Now equation 19.4.18 tells us that )cos1(4 θ−= as , and, on substitution of this in 

equations 19.9.3 and 4, we find (after a very little algebra and trigonometry) for the parametric 

equations to the path described by the bob of the pendulum: 

 

    )2sin2( θ+θ= ax       19.9.5 

 

and    .cos2 2 θ−= ay       19.9.6 

 

Thus the path of the pendulum bob (shown as a dashed line in figure XIX.10) is a cycloid, and 

hence its period is independent of its amplitude.   (Recall Section 19.5.)  Thus the pendulum is 

isochronous or tautochronous.  It is astonishing to learn that Huygens constructed just such a 

pendulum as long ago as 1673. 

 

 

19.10   Examples of Cycloidal Motion in Physics 

 

Several examples of cycloidal motion in physics come to mind.  One is the nutation of a top, which 

is described in Section 4.10 of Chapter 10.  Earth’s axis nutates in a similar fashion.  Another well 

known example is the motion of an electron in crossed electric and magnetic fields.  This is 

described in Chapter 8 of the Electricity and Magnetism section of these notes.  In cosmology, if 

the mean density of the Universe is low, the Universe expands indefinitely, but, if the density is 

higher than a certain critical density, the (dimensionless) scale factor R of the Universe expands and 

contracts with time t according to the following parametric cycloidal equations: 

 

    ,)2cos1(
)1(2 0

0 θ−
−Ω

Ω
=R      19.10.1 

   

    .)2sin2(
)1(2 2/3

0

0 θ−θ
−Ω

Ω
=t     19.10.2 

 

Here t is expressed in units of the reciprocal of the present Hubble constant, and Ω0 is the ratio of 

the present density of the Universe to the density required to “close” the Universe. 

 

A less well known example concerns the propagation of sound in the atmosphere.  In the 

troposphere, which is the lower part of the atmosphere up to about 11 km, the temperature 

decreases roughly linearly with height.  In that case sound travels through the troposphere in a 

cycloidal path.  The speed of sound in a gas is proportional to the square root of the temperature.  

(If you are wondering how it depends on pressure P and density ρ, the answer is that it depends on 

the ratio P/ρ - and this ratio is proportional to the temperature.)  In any case, if the temperature 

decreases linearly with height, the sound speed v varies with height y as  

 

     ,10 cy−= vv      19.10.3 
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where c is a constant, equal to about 0.023 km
−1

.Now to trace a sound ray through the atmosphere, 

we have to understand how the direction of propagation changes as the sound passes through layers 

of air of different temperature.  This is governed , as with light, by Snell’s law (see figure XIX.11): 

 

     .tan ψψ−= d
d

v

v
     19.10.4

     

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Snell’s law states that when sound (or light) enters a slower medium (i.e. one in which the speed of 

propagation is slower) it is bent towards the normal.  I have drawn figure XIX.11 to represent the 

situation in the troposphere where the temperature (and hence the sound speed v) decreases with 

height.  That is, dv/dy is negative.  In other words dv in figure XIX is negative, and equation 

19.10.4 indicates that dψ is positive, as drawn.  In case you do not recognize this differential form 

of Snell’s law, try integrating it from v1 to v2 and from ψ1 to ψ2, and it should assume its more 

familiar integral form. 

 

If you now eliminate v between equations 19.10.3 and 4, you will get a differential relation 

between y and ψ, which, upon integration, becomes 

 

    ,
cos

cos
1

0

2

2

ψ

ψ
−=cy       19.10.5 

 

where ψ0 is the ground-level value of ψ.  If we introduce  

 

    ,
cos2

1

0

2 ψ
=

c
a       19.10.6 

y 

ψ 

ψ  +  dψ  

v 

v  +  dv 

FIGURE XIX.11 
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equation 19.10.5 can be conveniently re-written 

  

  .)cos(cos2)sin(sin2 2

0

2

0

22 ψ−ψ=ψ−ψ= aay    19.10.7 

 

Now tan ψ = dy/dx, and elimination of y between this and equation 19.10.7 will give a differential 

relation between x and ψ, which, upon integration, becomes 

 

   ].2sin2sin)(2[ 00 ψ−ψ+ψ−ψ= ax     19.10.8 

 

Equations 19.10.7 and 19.10.8 are the parametric equations of the sound path through the 

troposphere, and describe a cycloid. 

 

Problem for a Rainy Day:  If  x = 2.0 and y = 1.6, what are ψ and ψ0? 

 

I make it '.5215,'1769
o

0
o

=ψ=ψ  


