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CHAPTER 14 

GENERAL PERTURBATION THEORY 
 

 

14.1   Introduction 

 

A particle in orbit around a point mass – or a spherically symmetric mass distribution – is 

moving in a gravitational potential of the form ./ rGM−   In this potential it moves in a 

keplerian ellipse (or hyperbola if its kinetic energy is large enough) that can be described 

by the six orbital elements a, e, i, Ω, ω, T, or any equivalent set of six parameters. 

 

If the potential is a little different from ,/ rGM−  say )/( RrGM +− , the orbit will be 

perturbed, and R is described as a perturbation.  As a result it will no longer move in a 

perfect keplerian ellipse.  Perturbations may be periodic or secular.  For example, the 

elements such as a, e or i may vary in a periodic fashion, while there may be secular 

changes (i.e. changes that are not periodic but constantly increase or decrease in the same 

direction) in elements such as Ω and ω.  (That is, the line of nodes and the line of apsides 

may monotonically precess; they may advance or regress.) 

 

In some situations it may be possible to express the perturbation in terms of a simple 

algebraic formula.  An example would be a particle in orbit around a slightly oblate 

planet, where it is possible to express the potential algebraically.  The aim of this chapter 

will be to try to find general expressions for the rates of change of the orbital elements in 

terms of the perturbing function, and we shall use the orbit around an oblate planet as an 

example. 

 

In other situations it is not easily possible to express the perturbation in terms of a simple 

algebraic function.  For example, a planet in orbit around the Sun is subject not only to 

the gravitational field of the Sun, but to the perturbations caused by all the other planets 

in the solar system.  These special perturbations have to be treated numerically, and the 

techniques for doing so will be described in chapter 15. 

 

 

14.2   Contact Transformations and General Perturbation Theory 

 

(Before reading this section, it may be well to re-read section 10.11 of Chapter 10.) 

 

Suppose that we have a simple problem in which we know the hamiltonian H0 and that 

the Hamilton-Jacobi equation has been solved: 
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Now suppose we have a similar problem, but that the hamiltonian, instead of being just 

H0 is RHH −= 0 , and .
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Let us make a contact transformation from (pi , qi) to (Pi , Qi), where 

.and
i

i

i

i
Q

K
P

P

K
Q

∂

∂
−=

∂

∂
= &&    In the orbital context, following Section 10.11, we 

identify Qi  with αi and Pi with −βi , which are functions (given in Section 10.11) of the 

orbital elements and which can serve in place of the orbital elements.  The parameters are 

constants with respect to the unperturbed problem, but are variables with respect to the 

perturbing function.  They are given, as functions of time, by the solution of Hamilton’s 

equations of motion, which retain their form under a contact transformation.  

 

    .and
i

i

i

i

RR

α∂

∂
−=β

β∂

∂
=α &&            14.2.2a,b 

 

Perturbation theory will show , then, how the αi and βi will vary with a given 

perturbation.  The conventional elements a, e, i, Ω, ω, T are functions of αi , βi, and our 

aim is to find how the conventional elements vary with time under the perturbation R. 

 

We can do that as follows.  Let Ai be an orbital element, given by  
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By equations 14.2.2a,b, this becomes 
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That is   .∑ ∑ 
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This can be written, in shorthand: 
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Here the symbol 
jjki AA βα ,},{ is called the Poisson bracket of  Ai , Ak with respect to αj , 

βj.   (In the language of the typographer, the symbols (), [] and {} are, respectively, 

parentheses, brackets and braces; you may refer to Poisson braces if you wish, but the 

usual term, in spite of the symbols, is Poisson bracket.) 

 

Note the property 
jjki AA βα ,},{ =   − .},{ , jjik AA βα  

 

 

14.3    The Poisson Brackets for the Orbital Elements 

 

A worked example is in order.  From equations 14.2.7 and 14.2.8, we see that the Poisson 

brackets are defined by 
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The Ai are the orbital elements. 

 

For our example, we shall calculate {Ω  ,  i} and we write out the sum in full: 
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Refer now to equations 10.11.27 and 29, and we find 
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Finally, referring to equations 10.11.20 and 21, we obtain 
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Proceeding in a similar manner for the others, we obtain 
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In addition, we have, of course,  
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All other pairs are zero. 

 

 

14.4    Lagrange’s Planetary Equations 

 

We now go to equation 14.2.8 to obtain Lagrange’s Planetary Equations, which will 

enable us to calculate the rates of change of the orbital elements if we know the form of 

the perturbing function: 
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14.5    Motion Around an Oblate Symmetric Top 

 

In Section 5.12 we developed an expression (equation 5.12.6) for the gravitational 

potential of an oblate symmetric top (e.g. an oblate spheroid).  With a slight change of 

notation to conform to the present context, we obtain for the perturbing function 
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This is the negative of the additional potential energy of a mass m at a point whose 

cylindrical coordinates are (r , z) in the vicinity of a symmetric top (which I’ll henceforth 

call an oblate spheroid) whose principal second moments of inertia are C (polar) and A 

(equatorial).  This is correct to order r/a, where a is the equatorial radius of the spheroid. 

 

Let us imagine a particle of mass m in orbit around an oblate spheroid – e.g. an artificial 

satellite in orbit around Earth.  Suppose the orbit is inclined at an angle i to the equator, 

and the argument of perigee is ω.  At some instant, when the cylindrical coordinates of 

the satellite are (r , z), its true anomaly is v. 

 

Exercise (in geometry):   Show that .)(sinsin/ v+ω= irz  

 

Having done that, we see that the perturbing function can be written 
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Here, r and v vary with time, or what amounts to the same thing, with the mean anomaly 

M.  With a (nontrivial) effort, this can be expanded as a series, including a constant (time 

independent) term plus periodic terms of the form cos M,  cos 2M,  cos 3M, etc.  If the 

spirit moves me, I may post the details at a later date, but for the present I give the result 
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that, if the expansion is taken as far as e
2
 (i.e. we are assuming that the orbit of the 

satellite is not strongly eccentric), the constant (time-independent) part of the perturbing 

function is  
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Now look at Lagrange’s equations, and you see that the secular parts of iea &&& and,  are 

all zero.  That is, although there may be periodic variations (which we have not 

examined) in these elements, to this order of approximation (e
2
) there is no secular 

change in these elements. 

 

On the other hand, application of equation 14.4.5 gives for the secular rate of change of 

the longitude of the nodes 
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The reader will no doubt be relieved to note that this expression does not contain m, the 

mass of the orbiting satellite; M is the mass of the Earth.   The reader may also note the 

minus sign, indicating that the nodes regress.  To obtain the factor (1  + 2e
2
), readers will 

have to do a little bit of work, and to expand, by the binomial theorem, whatever 

expression in e they get, as far as e
2
. 

 

Let a be the equatorial radius of Earth.  Multiply top and bottom of equation 14.5.4 by 

a
7/2

, and the equation becomes 
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Here M is the mass of Earth (not of the orbiting satellite), a is the semi major axis of the 

satellite’s orbit, and a is the equatorial radius of Earth. 

  

[If we assume Earth is an oblate spheroid of uniform density, then, according to example 

1.iii of Section 2.20 of Chapter 2 of our notes on Classical Mechanics, .2
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the density of Earth is not uniform, so we’ll leave equation 14.5.5 as it is.] 

 

For a nearly circular orbit, equation 14.5.5 becomes just 

     

   .cos
)(

2

3
2/7

23
i

aM

ACGM







−
−=Ω

a

aa

&    14.5.6 



 7 

 

This tells us that the line of nodes of a satellite in orbit around an oblate planet (i.e C > A) 

regresses.  From the rate of regression of the line of nodes, we can deduce the difference, 

C − A between the principal moments of inertia, though we cannot deduce either moment 

separately.  (If we could determine the moment of inertia from the rate of regression of 

the nodes – which we cannot – how well can we determine the density distribution inside 

Earth?  See Problem 14 in Chapter A of our Classical Mechanics notes to determine the 

answer to this.  It will be found that knowledge of the moment of inertia places only weak 

constraints on the core size and density.) 

 

Numerically it is known for Earth that the quantity 
23
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ACGM −
 is about 2.04 rad 

s
−1

, or about 10.1 degrees per day.  Thus the rate of regression of the nodes of a satellite 

in orbit around Earth in a near-circular orbit is about 
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We can refer to equations 14.4.4 and 14.5.3 to determine the rate of motion of the line of 

apsides, .ω&   After some algebra, and neglect of terms of order e
2
 and higher, we find 
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or, if we multiply top and bottom by a
7/2 

, 
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Thus we find that the line of apsides advances if the inclination of the orbit to the equator 

is less than 63
o
 and it regresses if the inclination is greater than this. 

 

In this section, I have demanded a fair amount of work from the reader – in particular for 

the expansion of equation 14.5.2.  While the work requires some patience and 

persistence, it is straightforward, and the resolute reader will be able to work out the 

expansion in terms of the mean anomaly and the time, and hence, by making use of 

Lagrange’s planetary equations, will be able to predict the periodic variations in a, e and 

i.  For the time being, I am not going to do this, since no new principles are involved, the 

aim of the chapter being to give the reader a start on how to start to calculate the changes 

in the orbital elements if one can express the perturbing function analytically.   
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For the effect of the perturbation of a planetary orbit by the presence of other planets, we 

have to solve the problem numerically by the techniques of special perturbations, which, 

I hope, some time in the future, may be the subject of an additional chapter.  


