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CHAPTER 13 

CALCULATION OF ORBITAL ELEMENTS 

 

 

13.1   Introduction 

 

We have seen in Chapter 10 how to calculate an ephemeris from the orbital elements.  

This chapter deals with the rather more difficult problem of determining the orbital 

elements from the observations. 

 

We saw in Chapter 2 how to fit an ellipse (or other conic section) to five points in a 

plane.  In the case of a planetary orbit, we need also to know the orientation of the plane, 

which will require two further bits of information.  Thus we should be able to determine 

the shape, size and orientation of the ellipse from seven pieces of information.   

 

This, however, is not quite the same problem facing us in the determination of a planetary 

orbit.  Most importantly, we do not know all of the coordinates of the planet at the time 

of any of the observations.  We know two of the coordinates – namely the right ascension 

and declination – but we have no idea at all of the distance.  All that an observation gives 

us is the direction to the planet in the sky at a given instant of time.  Finding the 

geocentric distance at the time of a given observation is indeed one of the more difficult 

tasks; once we have managed to do that, we have broken the back of the problem. 

 

However, although we do not know the geocentric (or heliocentric) distances, we do have 

some additional information to help us.  For one thing, we know where one of the foci of 

the conic section is.  The Sun occupies one of them – though we don’t immediately know 

which one.  Also, we know the instant of time of each observation, and we know that the 

radius vector sweeps out equal areas in equal times.  This important keplerian law is of 

great value in computing an orbit. 

 

To determine an orbit, we have to determine a set of six orbital elements.  These are, as 

previously described, a, e, i, Ω, ω and T for a sensibly elliptic orbit; for an orbit of low 

eccentricity one generally substitutes an angle such as M0, the mean anomaly at the 

epoch, for T.  Thus we can calculate the orbit from six pieces of information.  We saw in 

Chapter 10 how to do this if we know the three heliocentric spatial coordinates and the 

three heliocentric velocity components – but this again is not quite the problem facing us, 

because we certainly do not know any of these data for a newly-discovered planet. 

 

If, however, we have three suitably-spaced observations, in which we have measured 

three directions (α , δ) at three instants of time, then we have six data, from which it may 

be possible to calculate the six orbital elements.  It should be mentioned, however, that 

three observations are necessary to obtain a credible solution, but they may not always be 

sufficient. Should all three observations, for example, be on the ecliptic, or near to a 

stationary point, or if the planet is moving almost directly towards us for a while and 

consequently hardly appears to move in the sky, it may not be possible to obtain a 

credible solution.  Or again, observations always have some error associated with them, 
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and small observational errors may under some circumstances translate into a wide range 

of possible solutions, or it may not even be possible to fit a single set of elements to the 

slightly erroneous observations. 

 

In recent years, the computation of the orbits of near-Earth asteroids has been a matter of 

interest for the public press, who are likely to pounce on any suggestion that the 

observations might have been “erroneous” and the orbit “wrong” – as if they were 

unaware that all scientific measurement always have error associated with them.  There is 

a failure to distinguish errors from mistakes. 

 

When a new minor planet or asteroid is discovered, as soon as the requisite minimum 

number of observations have been made that enable an approximate orbit to be computed, 

the elements and an ephemeris are distributed to observers.  The purpose of this 

preliminary orbit is not to tell us whether planet Earth is about to be destroyed by a 

cataclysmic collision with a near-Earth asteroid, but is simply to supply observers with a 

good enough ephemeris that will enable them to find the asteroid and hence to supply 

additional observations.  Everyone who is actively involved in the process of observing 

asteroids or computing their orbits either knows or ought to know this, just as he also 

knows or ought to know that, as additional observations come in, the orbit will be revised 

and differential corrections will be made to the elements.  Further, the computed orbit is 

generally an osculating orbit, and the elements are osculating elements for a particular 

epoch of osculation.  In order to allow for planetary perturbations, the epoch of osculation 

is changed every 200 days, and new osculating elements are calculated.  All of this is 

routine and is to be expected.  And yet there has been an unfortunate tendency in recent 

years for not only the press but also for a number of persons who would speak for the 

scientific community, but who may not themselves be experienced in orbital 

computations, to attribute the various necessary revisions to an orbit to “mistakes” or 

“incompetence” by experienced orbit computers. 

 

When all the observations for a particular apparition have been amassed, and no more are 

expected for that apparition, a definitive orbit for that apparition is calculated from all 

available observations.  Even then, there will be small variations in the elements obtained 

by different computers.  This is because, among other things, each observation has to be 

critically assessed and weighted.  Some observations may be photographic; the majority 

these days will be higher-precision CCD observations, which will receive a higher 

weight.  Observations will have been made with a variety of telescopes with very 

different focal lengths, and there will be variations in the experience of the observers 

involved.  Some observations will have been made in a great hurry in the night 

immediately following a new discovery.  Such observations are valuable for computing 

the preliminary orbit, but may merit less weight in the definitive orbit.  There is no 

unique way for dealing with such problems, and if two computers come up with slightly 

different answers as a result of weighting the observations differently it does not mean 

than one of them is “right” and that the other has made a “mistake”.  All of this should be 

very obvious, though some words that have been spoken or written in recent years 

suggest that it bears repeating. 
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There are a number of small problems involving the original raw observations.  One is 

that the instant of time of an observation is recorded and reported by an observer in 

Universal Time. This is the correct thing for an observer to do, and is what is expected of 

him or her.  The computer, however, uses as the argument for the orbital calculation the 

best representation of a uniformly-flowing dynamical time, which at present is TT, or 

Terrestrial Time (see chapter 7).  The difference for the current year is never known 

exactly, but has to be estimated.  Another difficulty is that observations are not made 

from the centre of Earth, but from some point on the surface of Earth – a point that is 

moving as Earth rotates.  Thus a small parallactic correction has to be made to the 

observations – but we do not know how large this correction is until we know the 

distance of the planet.  Or again, the computer needs to know the position of the planet 

when the sunlight reflected from it left the planet, not when the light eventually arrived at 

Earth twenty or so minutes later – but we do not know how large the light travel-time 

correction is until we know the distance of the planet.   

 

There is evidently a good deal involved in computing orbits, and this could be a very long 

chapter indeed, and never written to perfection to cover all contingencies.  In order to get 

started, however, I shall initially restrict the scope of this chapter to the basic problem of 

computing elliptical elements from three observations.  If and when the spirit moves me I 

may at a later date expand the chapter to include parabolic and hyperbolic orbits, 

although the latter pose special problems.  Computing hyperbolic elements is in principle 

no more difficult than computing elliptic orbits; in practice, however, any solar system 

orbits that are sensibly hyperbolic have been subject to relatively large planetary 

perturbations, and so the problem in practice is not at all a simple one.    Carrying out 

differential corrections to a preliminary orbit is also something that will have to be left to 

a later date. 

 

In the sections that follow, I am much indebted to Carlos Montenegro of Argentina who 

went line-by-line with me through the numerical calculations, resulting in a number of 

corrections to the original text.  Any remaining mistakes (I hope there are few, if any) are 

my own responsibility. 

 

13.2   Triangles 

 

I shall start with a geometric theorem involving triangles, which will be useful as we 

progress towards our aim of computing orbital elements. 
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Figure XIII.1 shows three coplanar vectors.  It is clearly possible to express r2 as a linear 

combination of the other two.  That is to say, it should be possible to find coefficients 

such that 

 

    r2   =   a1r1  +  a3r3  .     13.2.1 

 

The notation I am going to use is as follows: 

 

The area of the triangle formed by joining the tips of r2 and r3 is A1. 

The area of the triangle formed by joining the tips of r3 and r1 is A2. 

The area of the triangle formed by joining the tips of r1 and r2 is A3. 

 

To find the coefficients in equation 13.2.1, multiply both sides by  r1 %%%% : 

 

   r1 %%%% r2   =   a3 r1 %%%% r3 .      13.2.2 

    

The two vector products are parallel vectors (they are each perpendicular to the plane of 

the paper), of magnitudes 2A3 and 2A2 respectively.  (2A3 is the area of the parallelogram 

of which the vectors r1 and r2 form two sides.) 

 

â               a3   =   A3/A2 .      13.2.3 

 

Similarly by multiplying both sides of equation 13.2.1 by r3 %%%% it will be found that 

 

         a1   =   A1/A2 .      13.2.4 

 

Hence we find that 

     A2r2   =   A1r1  +  A3r3  .     13.2.5 

 

     

 

13.3   Sectors 
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Figure XIII.2 shows a portion of an elliptic (or other conic section) orbit, and it shows the 

radii vectores of the planet’s position at instants of time t1, t2 and t3. 

 

The notation I am going to use is as follows: 

 

The area of the sector formed by joining the tips of r2 and r3 around the orbit is B1. 

The area of the sector formed by joining the tips of r3 and r1 around the orbit is B2. 

The area of the sector formed by joining the tips of r1 and r2 around the orbit is B3. 

    

The time interval t3 − t2 is τ1. 

The time interval t3 − t1 is τ2. 

The time interval t2 − t1 is τ3. 

 

Provided the arc is fairly small, then to a good approximation (in other words we can 

approximate the sectors by triangles), we have 

 

    B2r2   ¡   B1r1  +  B3r3  .    13.3.1 

 

That is,      r2   ¡   b1r1  +  b3r3   ,    13.3.2 

 

where       b1   =   B1/B2      13.3.3 

 

and       b3   =   B3/B2      13.3.4 

 

The coefficients b1 and b3 are the sector ratios, and the coefficients a1 and a3 are the 

triangle ratios. 

 

By Kepler’s second law, the sector areas are proportional to the time intervals.   

 

     

That is       b1   =   τ1/τ2      13.3.5 

 

and       b3   =   τ3/τ2  .      13.3.6 

 

Thus the coefficients in equation 13.3.2 are known.  Our aim is to use this approximate 

equation to find approximate values for the heliocentric distances at the instants of the 

three observations, and then to refine them in order to satisfy the exact equation 13.2.5.  

We shall embark upon our attempt to do this in section 13.6, but we should first look at 

the following three sections. 
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13.4   Kepler’s Second Law 

 

In section 13.3 we made use of Kepler’s second law, namely that the radius vector 

sweeps out equal areas in equal times.  Explicitly, 

 

    .
2
1

2
1 GMlhB ==&      13.4.1 

 

We are treating this as a two-body problem and therefore ignoring planetary 

perturbations.  It is nevertheless worth reminding ourselves – from section 9.5 of chapter 

9, especially equations 9.5.17, 9.4.3, 9.5.19, 9.5.20 and 9.5.21, of the precise meanings of 

the symbols in equation 13.4.1.  The symbol h is the angular momentum per unit mass of 

the orbiting body, and l is the semi latus rectum of the orbit.  If we are referring to the 

centre of mass of the two-body system as origin, then h and l are the angular momentum 

per unit mass of the orbiting body and the semi latus rectum relative to the centre of mass 

of the system, and  M is the mass function 23 )/( mMM + of the system, M  and m being 

the masses of Sun and planet respectively.  In chapter 9 we used the symbol M for the 

mass function.  If we are referring to the centre of the Sun as origin, then h and l are the 

angular momentum per unit mass of the planet and the semi latus rectum of the planet’s 

orbit relative to that origin, and M is the sum of the masses of Sun and planet, for which 

we used the symbol M in chapter 9.  In any case, for all but perhaps the most massive 

asteroids, we are probably safe in regarding the mass of the orbiting body as being 

negligible compared with the mass of the Sun.  In that case there is no distinction 

between the centre of the Sun and the centre of mass of the two-body system, and the M 

in equation 13.4.1 is then merely the mass of the Sun.  (Note that I have not said that the 

barycentre of the entire solar system coincides with the centre of the Sun.  The mass of 

Jupiter, for example, is nearly one thousandth of the mass of the Sun, and that is by no 

means negligible.) 

 

The symbol G, of course, stands for the universal gravitational constant.  Its numerical 

value is not known to any very high precision, and consequently the mass of the Sun is 

not known to any higher precision than G is.  Approximate values for them are G = 6.672 

% 10
−11

 N m
2
 kg

−2
 and M  =  1.989 % 10

30
 kg.  The product GM, is known to considerable 

precision; it is 1.327 124 38 % 10
20

 m
3
 s

−2
. 

 

 

Definition:   Until June 2012 the astronomical unit of distance (au) was defined as the 

radius of a circular orbit in which a body of negligible mass will, in the absence of 

planetary perturbations, move around the Sun at an angular speed of exactly 0.017 202 

098 95 radians per mean solar day, or 1.990 983 675 % 10
−7

 rad s
−1

, or 
 
0.985 607 668 6 

degrees per mean solar day.  This angular speed is sometimes called the gaussian 

constant and is given the symbol k.  With this definition, the value of the astronomical 

unit is approximately 1.495 978 70 % 10
11

 m.   

 

However, in June 2012 the International Astronomical Union re-defined the astronomical 

unit as 149 597 870 700 metres exactly.  This means that a body of negligible mass 
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moving around the Sun in a circular orbit will, in the absence of planetary perturbations, 

move at an angular speed of approximately 0.017 202 098 95 radians per mean solar day, 

This angular speed is the gaussian constant k - but, with the new definition of the au, it is 

no longer regarded as one of the fundamental astronomical constants.  The IAU also 

recommended that the official abbreviation for the astronomical unit should be au. 

 

If we equate the centripetal acceleration of the hypothetical body moving in a circular 

orbit of radius 1 AU at angular speed k to the gravitational force on it per unit mass, we 

see that 22 /aGMak = , so that 

     ,32akGM =      13.4.2 

 

where a is the length of the astronomical unit and k is the gaussian constant. 

     

 

13.5    Coordinates 

 

We need to make use of several coordinate systems, and I reproduce here the descriptions 

of them from section 10.7 of chapter 10.  You may wish to refer back to that chapter as a 

further reminder.  

   

 1.  Heliocentric plane-of-orbit.  ?xyz with the ?x axis directed towards 

perihelion.  The polar coordinates in the plane of the orbit are the heliocentric distance r 

and the true anomaly v. The z-component of the asteroid is necessarily zero, and x = r 

cos v  and .vsinry =  

 

 2.     Heliocentric ecliptic.    ?XYZ with the ?X  axis directed towards the First 

Point of Aries �, where Earth, as seen from the Sun, will be situated on or near 

September 22.  The spherical coordinates in this system are the heliocentric distance r, 

the ecliptic longitude λ, and the ecliptic latitude β, such that λβ= coscosrX  ,  

λβ= sincosrY  and .sin β= rZ  

  

 3.   Heliocentric equatorial coordinates.    ?ξηζ  with the ?ξ  axis directed 

towards the First Point of Aries and therefore coincident with the ?X  axis .  The angle 

between the ?Z  axis and the ?ζ  axis is ε, the obliquity of the ecliptic.  This is also the 

angle between the XY-plane (plane of the ecliptic, or of Earth’s orbit) and the ξη-plane 

(plane of Earth’s equator).  See figure X.4. 

 

 4.     Geocentric equatorial coordinates. /xyz with the /x axis directed 

towards the First Point of Aries.  The spherical coordinates in this system are the 

geocentric distance ∆, the right ascension α and the declination δ, such that 

.sinandsincos,coscos δ∆=αδ∆=αδ∆= zyx  

  

A summary of the relations between them is as follows 
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   ,coscos o ξ+=∆=δα∆= xx l       13.5.1 

 

   ,cossin o η+=∆=δα∆= yy m     13.5.2 

 

   .sin o ζ+=∆=δ∆= zz n               13.5.3 

 

Here, (l , m , n) are the direction cosines of the planet’s geocentric radius vector.  They 

offer an alternative way to (α , δ) for expressing the direction to the planet as seen from 

Earth.  They are not independent but are related by 

  

    .1222 =++ nml      13.5.4 

 

The symbols xo , yo and zo are the geocentric equatorial coordinates of the Sun.  [I would 

prefer to use the solar symbol ? (which I can find in the Math B font) as a subscript, but I 

have not found a way to incorporate this symbol into the Word equation editor.  If any 

reader can help me with this, please contact me at jtatum@uvic.ca.] 

 

 

   

 

13.6    Example  

 

As we proceed with the theory, we shall try an actual numerical example as we go.  We 

shall suppose that the following three observations are available: 

 

       0
h
 TT      R.A. (J2000.0)                        Dec. (J2000.0) 

 

  2002 Jul 10   21
h
 15

m
.40   +16

o
 13'.8 

     = 318
o
.8500           = +16

o
.2300 

     = 5.564 982 rad          = +0.283 267 rad  

 

 

  2002 Jul 15  21
h
 12

m
.44   +16

o
 03'.5 

     = 318
o
.1100           = +16

o
.0583 

     = 5.552 067 rad          = + 0.280 271 rad 

 

 

  2002 Jul 25  21
h
 05

m
.60      +15

o
 24.8 

     = 316
o
.4000           = +15

o
.4133  

     = 5.522 222 rad          = + 0.269 013 rad 

 

 

We shall suppose that the times given are 0
h
 TT, and that the observations were made by 

an observer at the centre of Earth.  In practice, an observer will report his or her 
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observations in Universal Time, and from the surface of Earth.  We shall deal with these 

two refinements at a later time.     

  

The “observations” given above are actually from an ephemeris for the minor planet 2 

Pallas published by the Minor Planet Center of the International Astronomical Union.  

They will not be expected to reproduce exactly the elements also published by the MPC, 

because the ephemeris positions are rounded off to 0
m

.01 and 0'.1, and of course the MPC 

elements are computed from all available observations, not just three. But we should be 

able to compute elements close to the correct ones.  Observations are usually given to a 

precision of about 0.1 arcsec.  For the purposes of the illustrative calculation let us start 

the calculation with the right ascensions and declinations given above to six decimal 

places as exact.  

 

 

 

13.7    Geocentric and Heliocentric Distances – First Attempt 

 

Let us write down the three heliocentric equatorial components of equation 13.2.1: 

 

    ,33112 ξ+ξ=ξ aa       13.7.1 

 

    ,33112 η+η=η aa       13.7.2 

 

    .33112 ζ+ζ=ζ aa       13.7.3 

 

Now write l∆ − xo for ξ, etc., from equations 13.5.1,2,3 and rearrange to take the solar 

coordinates to the right hand side: 

 

   ,o332oo1133322111 xxx aaallal +−=∆+∆−∆    13.7.4 

 

   ,o332oo1133322111 yyy aaammam +−=∆+∆−∆    13.7.5 

 

   .o332oo1133322111 zzz aaannan +−=∆+∆−∆    13.7.6 

 

As a very first, crude, approximation, we can let a1 = b1 and a3 = b3, for we know b1 and 

b3 (in our numerical example, 
3
1

33
2

1
, == bb ), so we can solve equations 13.7.4,5,6 for 

the three geocentric distances.  However, we shall eventually need to find the correct 

values of a1 and a3. 

 

When we have solved these equations for the geocentric distances, we can then find the 

heliocentric distances from equations 13.5.1,2 and 3.  For example,  

 

     1o111 x−∆=ξ l     13.7.7 
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and of course    .2

1

2

1

2

1

2

1 ζ+η+ξ=r    13.7.8 

 

In our numerical example, we have 

 

   l1  =  +0.722 980 907 

   l2  =  +0.715 380 933 

   l3  =  +0.698 125 992 

 

   m1 = −0.631 808 343 

   m2 = −0.641 649 261 

   m3 = −0.664 816 398 

 
   n1 = +0.279 493 876 

   n2 = +0.276 615 882 

   n3 = +0.265 780 465 

 

As a check on the arithmetic, the reader can - and should - verify that 

 

12
3

2
3

2
3

2
2

2
2

2
2

2
1

2
1

2
1 =++=++=++ nmlnmlnml  

 

This does not verify the signs of the direction cosines, for which care should be taken. 

 

 

From The Astronomical Almanac for 2002, we find that 

 

xo1   =   −0.306 728 3  yo1   =   +0.889 290 0  zo1   =   +0.385 549 5   AU 

xo2   =   −0.386 194 4  yo2   =   +0.862 645 7  zo2   =   +0.373 999 6 

xo3   =   −0.536 330 8  yo3   =   +0.791 387 2  zo3   =   +0.343 100 4 

 

(For a fraction of a day, which will usually be the case, these coordinates can be obtained 

by nonlinear interpolation – see chapter 1, section 1.10.) 

 

 

Equations 13.7.4,5,6 become 

 

+0.481 987 271∆1  −  0. 715 380 933∆2  +  0. 232 708 664∆3   =     0.002 931 933        

 

−0.421 205 562∆1  +  0.641 649 261∆2   −  0.221 605 466∆3   =   −0.005 989 967       

 

+0.186 329 251∆1   − 0.276 615 882∆2   +  0.088 593 488∆3   =   −0.002 599 800 

 

I give below the solutions to these equations, which are our first crude approximations to 

the geocentric distances in AU, together with the corresponding heliocentric distances.  I 

also give, for comparison, the correct values, from the published MPC ephemeris 
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    First crude estimates              MPC 

 

∆1   =   2.725 71 r1   =   3.485 32  ∆1   =   2.644      r1   =   3.406  

∆2   =   2.681 60  r2   =   3.481 33  ∆2    =   2.603        r2   =   3.404 

∆3   =   2.610 73 r3   =   3.474 71  ∆3   =   2.536        r3   =   3.401 

 

This must justifiably give cause for some satisfaction, because we now have some idea of 

the geocentric distances of the planet at the instants of the three observations, though it is 

a little early to open the champagne bottles.  We still have a little way to go, for we must 

refine our values of a1 and a3.     Our first guesses, a1 = b1 and a3 = b3, are not quite good 

enough. 

 

The key to finding the geocentric and heliocentric distances is to be able to determine the 

triangle ratios a1   =   A1/A2,  a3   =   A3/A2 and the triangle/sector ratios a/b.  The sector 

ratios are found easily from Kepler’s second law.  We have made our first very crude 

attempt to find the geocentric and heliocentric distances by assuming that the triangle 

ratios are equal to the sector ratios.  It is now time to improve on that assumption, and to 

obtain better triangle ratios.  After what may seem like a considerable amount of work, 

we shall obtain approximate formulas, equations 13.8.35a,b, for improved triangle ratios.  

The reader who does not wish to burden himself with the details of the derivation of these 

equations may proceed directly to them, near the end of Section 13.7 

 

 

13.8    Improved Triangle Ratios 

 

The equation of motion of the orbiting body is 

 

    .
3

rr
r

GM
−=&&       13.8.1 

 

If we recall equation 13.4.2, this can be written 

 

    .
3

3
2

rr 







−=

r

a
k&&      13.8.2 

 

If we now agree to express r in units of a (i.e. in Astronomical Units of length) and time 

in units of 1/k  (1/k = 58.132 440 87 mean solar days), this becomes merely 

 

    .
1

3
rr

r
−=&&       13.8.3 

 

In these units, GM has the value 1. 

 

Now write the x- and y- components of this equation, where (x , y) are heliocentric 

coordinates in the plane of the orbit (see sections 13.5 or 10.7). 
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3

r

x
x −=&&       13.8.4 

 

and    ,
3

r

y
y −=&&       13.8.5 

 

where    .222 ryx =+      13.8.6 

 

The areal speed is ,
2
1

2
1 GMlh = or, in these units,  ,

2
1 l  where l is the semi latus 

rectum of the orbit in A.U. 

 

Let the planet be at (x, y) at time t.  Then at time t + δt it will be at (x +  δx , y  +  δy), 

where 

 

  K&&&&&&&&&& +δ+δ+δ+δ=δ 4

!4
13

!3
12

!2
1 )()()( txtxtxtxx          13.8.7 

 

and similarly for y. 

 

Now, starting from equation 13.8.4 we obtain 

 

    
34

3

r

x

r

rx
x

&&
&&& −=      13.8.8 

 

and   .
34

3
6

23

5

2

44
r

rxrxr

r

rx

r

rx

r

rx
x

&&&&&&&&&
&&&&

−
−








−+=    13.8.9 

 

(The comment in the paragraph preceding equation 3.4.16 may be of help here, in case 

this is heavy-going.) 

 

Now x&&  and x are related by equation 13.8.4, so that we can write equation 13.8.9 with no 

time derivatives of x higher than the first, and indeed it is not difficult, because equation 

13.8.4 is just .3 xxr −=&&   We obtain 

 

    .
63121

445

2

6
r

rx

r

r

r

r

r
xx

&&&&&
&&&& +








+−=    13.8.10 

 

In a similar fashion, because of the relation 13.8.4, all higher time derivatives of x can be 

written with no derivatives of x higher than the first, and a similar argument holds for y. 

 

Thus we can write equation 13.8.7 as 

 

    xGFxxx &+=δ+      13.8.11 
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and similarly for y: 

 

    ,yGFyyy &+=δ+      13.8.12 

 

where    K
&&&&

+δ







+−+δ+δ−= 4

45

2

6

3

4

2

3
)(

3121

24

1
)(

2
)(

2

1
1 t

r

r

r

r

r
t

r

r
t

r
F  13.8.13 

 

and           K
&

+δ+δ−δ= 4

4

3

3
)(

4
)(

6

1
t

r

r
t

r
tG     13.8.14 

 

   

Now we are going to look at the triangle and sector areas.  From figure XIII.1 we can see 

that 

 

   .,, 212
1

3312
1

2322
1

1 rrArrArrA ×=×=×=       13.8.15a,b,c 

 

Also, angular momentum per unit mass is r % v and Kepler’s second law tells us that 

areal speed is half the angular momentum per unit mass and that it is constant and equal 

to l
2
1  (in the units that we are using), so that  

 

   .
2
1

2
1

2
1

332211
rrrrrrB &&&& ×=×=×=        13.8.16a,b,c 

 

All four of these vectors are parallel and perpendicular to the plane of the orbit, to that 

their magnitudes are just equal to their z-components.  From the usual formulas for the 

components of a vector product we have, then, 

 

    )(,)(,)( 21212
1

331312
1

232322
1

1 xyyxAxyyxAxyyxA −=−=−=    13.8.17a,b,c 

 

and 

 

     .)()()( 33332
1

22222
1

11112
1

2
1 xyyxxyyxxyyxl &&&&&& −=−=−=         13.8.18a,b,c 

 

Now, start from the second observation (x2 , y2) at instant t2.  We shall try to predict the 

third observation, using equations 13.8.11-14, in which x + δx is x3 and δt is t3 − t2, which 

we are calling (see section 13.3) τ1.  I shall make the subscripts for F  and G the same as 

the subscripts for τ.  Thus the F and G that connect observations 2 and 3 will have 

subscript 1, just as we are using the notation τ1 for t3 − t2. 
 

Thus we have 

 

    21213 xGxFx &+=      13.8.19 
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and    ,21213 yGyFy &+=      13.8.20 

 

where      K
&&&&

+τ
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and        .
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1 4

13

2

23

13

2

11 K
&

+τ+τ−τ=
r

r

r
G     13.8.22 

 

Similarly, the first observation is given by 

 

    23231 xGxFx &+=      13.8.23 

 

and    ,23231 yGyFy &+=      13.8.24 

 

where, by substitution of −τ3 for δt, 

 

       K
&&&&

+τ
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and        .
46

1 4

34

2

23

33

2

33 K
&

+τ+τ+τ−=
r

r

r
G    13.8.26 

 

From equations 13.8.17,18,19,20,23,24, we soon find that 

 

        .,)(, 32
1

331132
1

212
1

1 lGAlGFGFAlGA −=−==       13.8.27a,b,c 

 

Now we do not yet know rr &&& or , but we can take the expansions of F and G as far as τ2
.  

We then obtain, correct to τ3
: 

 

    ,
6
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2

2

1
12

1
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−τ=

r
lA     13.8.28 

 

    ,
6

1
3

2

2

2
22

1
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 τ
−τ=

r
lA     13.8.29 

 

and    .
6

1
3

2

2

3
32

1
3 







 τ
−τ=

r
lA     13.8.30 

 

Thus the triangle ratio a1 = A1/A2  is 
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which, to order τ3
, is        ,

6
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1
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2

2
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2

2
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1
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 τ−τ
+

τ

τ
=

r
a      13.8.32 

 

or, with ,312 τ=τ−τ      .
6

)(
1

3

2

123

2

1
1 







 τ+ττ
+

τ

τ
=

r
a     13.8.33 

 

Similarly,         .
6

)(
1

3

2

321

2

3
3 







 τ+ττ
+

τ

τ
=

r
a     13.8.34 

 

Further, with 323121 /and/ bb =ττ=ττ , 

 

  .)1(
6

and)1(
6

33

2

31
3313

2

31
11 b

r
bab

r
ba +

ττ
+=+

ττ
+=       13.8.35a,b 

 

These will serve as better approximations for the triangle ratios.   Be aware, however, that 

equations 13.8.35a,b are only approximations, and do not give the exact values for a1 and 

a3. 

 

 

13.9   Iterating 

 

We can now use equations 13.8.35a,b  and get a better estimate of the triangle ratios.  The 

numerical data are 

 

b1 = 2/3,   b3 = 1/3,   r2 = 3.481 33, 

 

τ1  =  t3 − t2  =  10 mean solar days  and   τ3  =  t2 − t1  =  5 mean solar days, but recall that 

we are expressing time intervals in units of 1/k, which is 58.132 440 87 mean solar days, 

and therefore   

τ1 =  0.172 021  and τ3  =  0.086 010. 

 

Equations 13.8.35 then result in 

     

a1  =  0.666 764 ,   a3   =   0.333 411 . 

 

Now we can go back to equation 13.7.4 and start again with our new values for the 

triangle ratios – und so weiter −  until we obtain new values for ∆1 , ∆2 , ∆3 and r2.  I show 

below in the first two columns the first crude estimates (already given above), in the 
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second two columns the results of the first iteration, and, in the last two columns, the 

values given in the published IAU ephemeris. 

 

 

     First crude estimates    First iteration          MPC 

 

             ∆               r        ∆               r        ∆          r 

 1    2.72571    3.48532 2.65825   3.41952    2.644    3.406  

 2    2.68160    3.48133 2.61558   3.41673         2.603    3.404 

 3    2.61073    3.47471 2.54579   3.41082    2.536    3.401 

 

 

We see that we have made a substantial improvement, but we are not there yet.  We can 

now calculate new values of a1 and a3 from equations 13.8.35a,b to get  

 

a1 =  0.666 770        a3 =   0.333 416. 

 

We could (if we so wished) now go back to equations 13.7.4,5,6, and iterate again.  

However, this will result in only small changes to a1, a3, ∆ and r, and we have to bear in 

mind that equations 13.8.35a,b are only approximations (to order τ3
). Therefore, even if 

successive iterations converge, they will still not give precise correct answers for ∆ and r. 

 

To anticipate, eventually we shall arrive at some exact equations (equations 13.12.25 and 

13.12.26) that will allow us to solve the problem.  But these equations will not be easy to 

solve.  They have to be solved by iteration using a reasonably good first guess.  It is our 

present aim to obtain a reasonably good first guess for a1, a3, ∆ and r, in order to prepare 

for the solution of the exact equations 13.12.25 and 13.12.26.  Our current values of a1 

and a3, while not exact, will enable us to solve equations 13.12.25 and 13.12.26 exactly, 

so we should now, rather than going back again to equations 13.7.4,5,6, proceed straight 

to Sections 13.11, 13.12 and 13.13.   

 

Nevertheless, in the following section, we provide (in equations 13.10.9 and 13.10.10), 

after considerable effort, higher-order expansions for a1 and a3.  These may be useful, but 

for reasons explained in the previous paragraph, it may be easier to skip Section 13.10 

entirely. 

 

 

13.10   Higher-order Approximation 

 

The reason that we made the approximation to order τ3
 was that, in evaluating the 

expressions for F1, G1, F3 and G3, we did not know the radial velocity .2r&   Perhaps we 

can now evaluate it.   

 

Exercise.  Show that the radial velocity of a particle in orbit around the Sun, when it is at 

a distance r from the Sun, is 
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  Ellipse:            ,
)(

2/1

2

222

0







 −−
=

ar

raea

a

GM
r m&     13.10.1 

 

          Parabola: ,
)(

0a

qrGM
r

−
= m&      13.10.2 

 

         Hyperbola: .
)(

2/1

2

222
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 −+
=

ar

eara

a

GM
r m&    13.10.3 

 

Show that the radial velocity is greatest at the ends of a latus rectum. 

 

Here a0 is the astronomical unit, a is the semi major axis of the elliptic orbit or the semi 

transverse axis of the hyperbolic orbit,  q is the perihelion distance of the parabolic orbit, 

and e is the orbital eccentricity.  The − sign is for pre-perihelion, and the + sign is for 

post-perihelion. 

 

Unfortunately, while this is a nice exercise in orbit theory, we do not know the 

eccentricity, so these formulas at present are of no use to us. 

 

 

However, we can calculate the heliocentric distances at the times of the first and third 

observations by exactly the same method as we used for the second observation.  Here 

are the results for our numerical example, after one iteration.  The units, of course, are 

AU.  Also indicated are the instants of the observations, taking t2 = 0 and expressing the 

other instants in units of 1/k (see section 13.8). 

 

 t1  =  −τ3  =  −0. 086 010 494 75 r1  =   3.419 52 

   

            t2   =  0     r2  =   3.416 73 

 

 t3  =  +τ1  =   +0.172 020 989 5 r3  =   3.410 82 

 

We can fit a quadratic expression to this, of the form: 

 

    2

210 tctccr ++=      13.10.4 

 

With our choice of time origin t2 = 0, c0 is obviously just equal to r2, so we have just two 

constants, c1 and c2 to solve for.  We can then calculate the radial velocity at the time of 

the second observation from 

 

    .2 2212 tccr +=&      13.10.5 
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We can calculate A1, A2 and A3 in the same manner as before, up to τ4
 rather than just τ3

. 

The algebra is slightly long and tedious, but straightforward.  Likewise, the results look 

long and unwieldy, but there is no difficulty in programming them for a computer, and 

the actual calculation is, with a modern computer, virtually instantaneous.  The results of 

the algebra that I give below are taken from the book Determination of Orbits by A.D. 

Dubyago (which has been the basis of much of this chapter).  I haven’t checked the 

algebra myself, but the conscientious reader will probably want to do so himself or 

herself. 
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And from these, 
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and             .
4
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1 24
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 τ−τ+τττ
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τ+ττ
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τ

τ
= r

rr
a &            13.10.10 

 

This might result in slightly better values for a1 and a3.  I have not calculated this for our 

numerical example here, for reasons given in Section 13.9.  We can move on to the next 

section, using our current vales of a1 and a3, namely 

 

a1 =  0.666 770   and a3 =   0.333 416. 
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13.11  Light-time Correction 

 

 Before going further, however, our current estimates of the geocentric distances 

are now sufficiently good that we should make the light-time corrections.  The observed 

positions of the planet were not the positions that they occupied at the instants when they 

were observed.  It actually occupied these observed positions at times  ,/11 ct ∆−  

ct /22 ∆− and ./33 ct ∆−   Here, c is the speed of light, which, as everyone knows, is 

10065.320 astronomical units per 1/k.  The calculation up to this point can now be 

repeated with these new times.  This may seem tedious, but of course with a computer, all 

one needs is a single statement telling the computer to go to the beginning of the program 

and to do it again. I am not going to do it with our particular numerical example, since the 

“observations” that we are using are in fact predicted positions from a Minor Planet 

Center ephemeris.  

 

 

13.12    Sector-Triangle Ratio 

 

We recall that it is easy to determine the ratio of adjacent sectors swept out by the radius 

vector.  By Kepler’s second law, it is just the ratio of the two time intervals.  What we 

really need, however, are the triangle ratios, which are related to the heliocentric distance 

by equation 13.2.1.  Oh, wouldn’t it just be so nice if someone were to tell us the ratio of 

a sector area to the corresponding triangle area!  We shall try in this section to do just 

that. 

 

Notation:   Triangle ratios:       ./,/ 233211 AAaAAa ==         13.12.1a,b 

 

       Sector ratios:    ./,/ 233211 BBbBBb ==         13.12.2a,b 

 

    Sector-triangle ratios: ,,,
3

3
3

2

2
2

1

1
1

A

B
R

A

B
R

A

B
R ===               13.12.3a,b,c 

 

from which it follows that 

 

     ., 3

3

2
31

1

2
1 b

R

R
ab

R

R
a ==          13.12.4a,b 

 

 

We also recall that subscript 1 for areas refers to observations 2 and 3; subscript 2 to 

observations 3 and 1; and subscript 3 to observations 1 and 2.  Let us see, then, whether 

we can determine R3 from the first and second observations. 

 

Readers who wish to avoid the heavy algebra may proceed direct to equations 13.12.25 

and 13.12.26, which will enable the calculation of the sector-triangle ratios. 
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Let (r1 , v1) and (r2 , v2) be the polar coordinates (i.e. heliocentric distance and true 

anomaly) in the plane of the orbit of the planet at the instant of the first two observations.  

In concert with our convention for subscripts involving two observations, let  

 

     .2 123 vv −=f     13.12.5 

 

We have R3 = B3/A3. From equation 13.4.1, which is Kepler’s second law, we have, in 

the units that we are using, in which GM = 1,  lB
2
1=&  and therefore .32

1
3 τ= lB   

Also, from the z-component of equation 13.8.15c, we have .)sin( 12212
1

3 vv −= rrA  

 

Therefore       .
2sin)sin( 321

3

1221

3
3

frr

l

rr

l
R

τ
=

−

τ
=

vv
           13.12.6a 

 

In a similar manner, we have 

 

    
132

1

2332

1
1

2sin)sin( frr

l

rr

l
R

τ
=

−

τ
=

vv
          13.12.6b 

 

   .
2sin)sin( 213

2

1313

2
2

frr

l

rr

l
R

τ
=

−

τ
=

vv
          13.12.6c 

 

I would like to eliminate l from here. 

 

I now want to recall some geometrical properties of an ellipse and a property of an 

elliptic orbit.  By glancing at figure II.11, or by multiplying equations 2.3.15 and 2.3.16, 

we immediately see that )(coscos eEar −=v , and hence by making use of a 

trigonometric identity we find 

 

    ,cos)1(cos
2
12

2
12

Eear −=v    13.12.7 

 

and in a similar manner it is easy to show that 

 

    .sin)1(sin
2
12

2
12

Eear +=v    13.12.8 

 

Here E is the eccentric anomaly. 

Also, the mean anomaly at time t is defined as )(
2

Tt
P

−
π

 and is also equal (via Kepler’s 

equation) to .sin EeE −   The period of the orbit is related to the semi major axis of its 

orbit by Kepler’s third law:  .
4 3

2
2

a
GM

P
π

=   (This material is covered on Chapter 10.)  

Hence we have (in the units that we are using, in which GM = 1): 
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    ,sin
2/3

a

Tt
EeE

−
=−     13.12.9 

 

where T is the instant of perihelion passage. 

 

Now introduce   ,2 123 vv −=f               13.12.10 

 

    ,2 123 vv +=F               13.12.11 

 

    ,2 123 EE −=g               13.12.12 

 

    .2 123 EE +=G               13.12.13 

 

From equation 13.12.7 I can write 

 

   22
1

12
1

22
1

12
1

21 coscos)1(coscos EEearr −=vv            13.12.14 

 

and from equation 13.12.8 I can write 

 

   .sinsin)1(sinsin 22
1

12
1

22
1

12
1

21 EEearr +=vv            13.12.15 

 

I now make use of the sum of the sum-and-difference formulas from page 38 of chapter 

3, namely ,)cos(cossinsinand)cos(coscoscos
2
1

2
1 SDBADSBA −=+=  to 

obtain 

 

      )cos)(cos1()cos(cos 333321 gGeafFrr +−=+            13.12.16 

 

and      .)cos)(cos1()cos(cos 333321 GgeaFfrr −+=−            13.12.17 

 

On adding these, we obtain 

 

   .)coscos(cos 33321 Gegafrr −=              13.12.18 

 

I leave it to the reader to derive in a similar manner (also making use of the formula for 

the semi latus rectum ))1( 2eal −=  

 

         glafrr sinsin 321 =              13.12.19 

 

and          .)coscos1(2 3321 Ggearr −=+             13.12.20 

 

We can eliminate e cos G from equations 13.12.18 and 13.12.20: 
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   3

2

332121 sin2coscos2 gagfrrrr =−+             13.12.21 

 

Also, if we write equation 13.12.9 for the first and second observations and take the 

difference, and then use the formula on page 35 of chapter 3 for the difference between 

two sines, we obtain 

 

    .)cossin(2
2/3

3
333

a
Ggeg

τ
=−             13.12.22 

 

Eliminate  e cos G3  from equations 13.12.18 and 13.12.22: 

 

       .cossin
2

2sin2
2/3

3
33

21

33
a

fg
a

rr
gg

τ
=+−                   13.12.23 

 

Also, eliminate l from equations 13.12.6 and 13.12.19: 

 

    .
sincos2 3321

3
3

gfrra
R

τ
=             13.12.24 

 

We have now eliminated F3, G3 and e, and we are left with equations 13.12.21, 23 and 

24, the first two of which I now repeat for easy reference: 

    

   3

2

332121 sin2coscos2 gagfrrrr =−+             13.12.21 

 

   .cossin
2

2sin2
2/3

3
33

21

33
a

fg
a

rr
gg

τ
=+−                       13.12.23 

 

In these equations we already know an approximate value for f3 (we’ll see how when we 

resume our numerical example); the unknowns in these equations are R3 , a and g3, and it 

is R3 that we are trying to find.  Therefore we need to eliminate a and g3. We can easily 

obtain a from equation 13.12.24, and, on substitution in equations 13.12.21 and 23 we 

obtain, after some algebra: 

 

    
33

2

32

3
cos gN

M
R
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=                   13.12.25 

 

and   ,
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)cossin(
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3
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gggM
RR

−
=−                   13.12.26 
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where    
( ) 2/3

321

3
3

cos2 frr
M

τ
=              13.12.27 

 

and    .
cos2 321

21
3

frr

rr
N

+
=               13.12.28 

 

Similar equations for R1 and R2 can be obtained by cyclic permutation of the subscripts.  

Equations 13.12.25 and 26 are two simultaneous equations in R3 and g3.  Their solution is 

given as an example in section 1.9 of chapter 1, so we can now assume that we can 

calculate the sector-triangle ratios. 

 

We can then calculate better triangle ratios from equations 13.12.4 and return to 

equations 13.7.4, 5 and 6 to get better geocentric distances.  From equations 13.7.8 and 9 

calculate the heliocentric distances.  Make the light-time corrections.  (I am not doing this 

in our numerical example because our original positions were not actual observations, but 

rather were ephemeris positions.)  Then go straight to this section (13.12) again, until you 

get to here again.  Repeat until the geocentric distances do not change. 

 

 

13.13     Resuming the Numerical Example 

 

Let us start with our previous iteration    

 

    ∆1   =   2.65825    r1   =   3.41952 

    ∆2   =   2.61558    r2   =   3.41673      

    ∆3   =   2.54579    r3   =   3.41082 

 

 - or rather with the more precise values that will at this stage presumably be stored in our 

computer. 

 

These are the values that we had reached when we last left the numerical example.  

 

I promised to say how we know f3.  We defined 2f3 as v2 −v1, and this is the angle 

between the vectors r1 and r2.   Thus 

 

   .2cos
21

212121
3

rr
f

ζζ+ηη+ξξ
=     13.13.1 

The heliocentric coordinates can be obtained from equations 13.5.1, 2 and 3.  For 

example,   

 

     ,1o111 x−∆=ξ l     13.13.2 

 

and of course    .2

1

2

1

2

11 ζ+η+ξ=r     13.13.3 
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We know how to find the components (ξ , η , ζ) of the heliocentric radius vector (see 

equations 13.7.8 and 9), and so we can now find f3.  I obtain 

 

  .3982999.0cos,1929999.02cos 33 == ff  

 

This means that the true anomaly is advancing at about 0
o
.68 in five days.  It is 

interesting to see whether we are on the right track.  According to the MPC, Pallas has a 

period of 4.62 years, which means that, on average, it will move through 1
o
.067 in five 

days.  But Pallas has a rather eccentric orbit (according to the MPC, e = 0.23).  The semi 

major axis of the orbit must be 3/2P = 2.77 AU (which agrees with the MPC), and 

therefore its aphelion distance a(1 + e) is about 3.41 AU.   Thus Pallas must be close to 

aphelion in July 2002.  By conservation of angular momentum, its angular motion at 

aphelion must be less than its mean motion by a factor of ,)1( 2e+  so the increase in the 

true anomaly in five days should be about  1
o
.067/1.23

2
 or 0

o
.71.  Thus we do seem to be 

on the right track. 

 

We can now calculate M3 and N3 from equations 13.12.27 and 28: 

 

    =2

3M 0.000 046 313 0 

 

    N3    =   1.000 018 

 

and so we have the following equations 13.12.25 and 26 for the sector-triangle ratios: 

 

 

    
3

2
3

cos018000.1

0313046000.0

g
R

−
=  

 

and   .
sin

)cossin(0313046000.0

3
3

3332
3

3
3

g

ggg
RR

−
=−  

 

Since we discussed how to solve these equations in section 1.9 of chapter 1, I merely give 

the solutions here.  The one useful hint worth giving is that you can make the first guess 

for the iteration for g3 equal to f3, which we know ( 3982999.0cos 3 =f ), and R3 = 1. 

 

   cos g3  =   0.999 972 ,      R3  =  1.000 031 

 

 

We can proceed similarly with R1 and R2. 

 

Here is a summary: 

 

Subscript cos f     M 
2
            N     cos g  R 
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        1       0.999 928 7      1.859 91 %  10
−4      

1.000 072      0.999 886            1.000 124 

        2       0.999 839 9      4.180 80 %  10
−4 

      1.000 161  0.999 743      1.000 279 

        3      0.999 982 3      4.631 30 %  10
−5

       1.000 018      0.999 972            1.000 031 

      

Our new triangle ratios will be 

 

   770666.0
3

2

124000.1

279000.1
1

1

2
1 =×== b

R

R
a           

 

 and             .416333.0
3

1

031000.1

279000.1
3

3

2
3 =×== b

R

R
a  

 

We can now go back to equations 13.7.4,5 and 6, and calculate the geocentric and 

heliocentric distances anew.  Skip sections 13.8, 13.9 and 13.10, and calculate new 

sector- triangle ratios and hence new triangle ratios, and repeat until convergence is 

obtained.  After three iterations, I obtained convergence to six significant figures and 

after seven iterations I obtained convergence to 11 significant figures. The results to six 

significant figures are as follows: 

 

    ∆1   =   2.65403        r1   =   3.41539 

    ∆2   =   2.61144        r2   =   3.41268 

    ∆3   =   2.54172        r3   =   3.40681 

 

This is not to be expected to agree exactly with the published MPC values, which are 

based on all available Pallas observations, whereas we arbitrarily chose three 

approximate ephemeris positions, but, based on these three positions, we have now 

broken the back of the problem and have found the geocentric and heliocentric distances. 

 

 

13.14    Summary So Far 

 

1. Gather together the three observations (t , α , δ). 

2. Convert t from UT to TT.  (See Chapter 7.) 

3. Calculate or look up and interpolate the solar coordinates. 

4. Calculate the geocentric direction cosines of the planet. (Equations 13.5.1-3) 

5. Calculate the first approximation to the geocentric distances, using a1 = b1, a3 

= b3. (Equations  13.7.4-6) 

6. Calculate the heliocentric distances.  (Equations 13.7.7-8) 

7. Improve a1 and a3. (Equations 13.8.32-34) Do steps 6 and 7 again. 

8. Optional. Calculate 2r&  (equation 13.10.4) and improve a1 and a3 again 

(equations 13.10.9-10) and again repeat steps 6 and 7. 

9. Make the light travel time corrections for the planet, and go back to step 3! 

Repeat 6 and 7 but of course with your best current a1 and a3. 
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10. Calculate f1 ,  f2 , f3 and the three values of M 
2
 and N.  (Equations 13.13.1, 

13.12.27-28) and solve equations 13.12.25-26 for the sector-triangle ratios.  

The method of solution of these equations is given in chapter 1, section 1.9. 

11. Calculate new triangle ratios (equations 13.12.4a,b) – and start all over again! 

 

By this stage we know the geocentric and heliocentric distances, and it is fairly 

straightforward from this point, at least in the sense that there are no further iterations, 

and we can just proceed from step to step without having to repeat it all over again.  The 

main problem in computing the angular elements is likely to be in making sure that the 

angles you obtain ( when you calculate inverse trigonometric functions such as arcsin, 

arccos, arctan) are in the correct quadrant.  If your calculator or computer has an ATAN2 

facility, make good use of it! 

 

 

 

13.15    Calculating the Elements 

 

We can now immediately calculate the semi latus rectum from equation 13.12.6a 

(recalling that 1232 vv −=f , so that everything except l in the equation is already 

known.)  In fact we have three opportunities for calculating the semi latus rectum by 

using each of equations 13.12.6a,b,c, and this serves as a check on the arithmetic.  For 

our numerical example, I obtain 

 

     l  =  2.61779 

 

identically (at least to eleven significant figures) for each of the three permutations.   

  

 

Now, on referring to equation 2.3.37, we recall that the polar equation to an ellipse is 

 

     .
cos1 ve

l
r

+
=     13.15.1 

 

We therefore have, for the first and third observations,  

 

    1/cos 11 −= rle v       13.15.2 

 

and, admitting that v3 = v1  +  2f2, 

 

    .1/)2cos( 321 −=+ rlfe v      13.15.3 

 

 

We observe that, in equations 13.15.2 and 13.15.3, the only quantities we do not already 

know are v1 and e – so we are just about to find our first orbital element, the eccentricity!   
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A hint for solving equations 13.15.2 and 3:   Expand .)2cos( 21 f+v   Take 1sinve  to the 

left hand side, and equation 13.15.3 will become 

 

   .
2sin

)1/(2cos).1/(
sin

2

321
1

f

rlfrl
e

−−−
=v    13.15.4 

 

After this, it is easy to solve equations 13.15.2 and 13.15.4 for e and for v1.  The other 

true anomalies are given by v2  =  v1  +  2f3   and  v3  =  v1  +  2f2.   A check on the 

arithmetic may (and should) be performed by carrying out the same calculation for the 

first and second observations and for the second and third observations.  For all three, I 

obtained 

        

e  =  0.23875 

 

We have our first orbital element! 

 

(The MPC value for the eccentricity for this epoch is 0.22994 – but this is based on all 

available observations, and we cannot expect to get the MPC value from just three 

hypothetical “observations”.) 

 

The true anomalies at the times of the three observations are 

 

v1  =  191
o
.99814 v2  =  192

o
.68221 v3  =  194

o
.05377 

 

After that, the semi major axis is easy from equation 2.3.10, l  =  a(1 − e
2
), for the semi 

latus rectum of an ellipse.  We find 

           

a  =  2.77602_AU 

 

The period in sidereal years is given by P
2
 = a

3
, and is therefore 4.62524 sidereal years.  

This is not one of the six independent elements, since it is always related to the semi 

major axis by Kepler’s third law, so it doesn’t merit the extra dignity of being underlined. 

However, it is certainly worth converting it to mean solar days by multiplying by 

365.25636.  We find that P = 1689.39944 days.   

 

The next element to yield will be the time of perihelion passage.  We find the eccentric 

anomalies for each of the three observations from any of equations 2.3.16, 17a, 17b or 

17c.  For example: 

 

    .
cos1

cos
cos

v

v

e

e
E

+

+
=      13.15.5 

 

Then the time of perihelion passage will come from equations 9.6.4 and 9.6.5: 
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          .)sin(
2

nPEeE
P

tT +−
π

−=     13.15.6 

 

With n = 1 I make this T   =  t1  +  756
d
.1319    

 

 

The next step is to calculate the Ps and Qs.  These are defined in equation 10.9.40.  They 

are the direction cosines relating the heliocentric plane-of-orbit basis set to the 

heliocentric equatorial basis set.  

 

Exercise.  Apply equation 10.9.50 to the first and third observations to show that 

 

    
231

113331

2sin

sinsin

frr

rr
Px

vv ξ−ξ
=     13.15.7 

 

and    .
2sin

coscos

231

331113

frr

rr
Qx

vv ξ−ξ
=     13.15.8 

 

From equations 10.9.51 and 52, find similar equations for Py , Qy , Pz , Qz . 

 

The numerical work can and should be checked by calculating these direction cosines 

also from the first and second, and from the second and third, observations.  Check also 

that  .1222222 =++=++ zyxzyx QQQPPP   I get 

 

  Px   =   −0.48044 Py   =   +0.86568 Pz   =   −0.14059 

 

  Qx   =   −0.87392 Qy   =   −0.45907 Qz   =   +0.15978 
 

(Remember that my computer is carrying all significant figures to double precision, 

though I print out here only a limited number of significant figures.  You will not get 

exactly my numbers unless you, too, carry all significant figures and do not prematurely 

round off.) 

 

The direction cosines are related to the Eulerian angles, of course, by equations 10.9.41-

46 (how could you possibly forget?!).  All (!) you have to do, then, is to solve these six 

equations for the Eulerian angles.  (You need six equations to remove quadrant ambiguity 

from the angles.  Remember the ATAN2 function on your computer – it’s an enormous 

help with quadrants.) 

 

Exercise.  Show that (or verify at any rate) that: 

 

        ε−ε=ω sincossinsin yz PPi     13.15.9 

 

and        .sincossincos ε−ε=ω yz QQi              13.15.10 
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You can now solve this for the argument of perihelion ω.  Don’t yet try to solve it for the 

inclination.  (Why not?!)   Using ε  =  23
o
.438 960 for the obliquity of the ecliptic of date 

(calculated from page B18 of the 2002 Astronomical Almanac), I get 
      
 

 

ω  =  304
o
.81849 

 

 

Exercise.  Show that (or verify at any rate) that: 

 

 

   εω−ω=Ω sec)sincos(sin yy QP              13.15.11 

 

and   .sincoscos ω−ω=Ω xx QP               13.15.12 

 

From these, I find: 

Ω  =  172ο.64776 
 

One more to go! 

 

 

Exercise.  Show that (or verify at any rate) that: 

 

   .csc)cossin(cos Ωω+ω−= xx QPi            13.15.13 

 

You can now solve this with equation 13.15.9 or 13.15.10 (or both, as a check on the 

arithmetic) for the inclination.  I get  

 

i = 35
o
.20872 

 

Here they are, all together: 

 

 a  =  2.77602 AU    i    =    35
o
.20872 

 e  =  0.23875     Ω  =  172ο.64776 
 T   =  t1  +  756

d
.1319    ω  =  304

o
.81849 

       

Have we made any mistakes?  Well, presumably after you read chapter 10 you wrote a 

program to generate an ephemeris.  So now, use these elements to see whether they will 

reproduce the original observations!  Incidentally, to construct an ephemeris, there is no 

need actually to use the elements – you can use the Ps and Qs instead. 
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13.16   Topocentric-Geocentric Correction 

 

In section 13.1 I indicated two small (but not negligible) corrections that needed to be 

made, namely the ∆T correction (which can be made at the very start of the calculation) 

and the light-time correction, which can be made as soon as the geocentric distances have 

been determined – after which it is necessary to recalculate the geocentric distances from 

the beginning!  I did not actually make these corrections in our numerical example, but I 

indicated how to do them.   

 

There is another small correction that needs to be made.  The diameter of Earth subtends 

an angle of 17".6 at 1 AU, so the observed position of an asteroid depends appreciably on 

where it is observed from on Earth’s surface.  Observations are, of course, reported as 

topocentric – i.e. from the place (τοπος) where the observer was situated.  They must be 

corrected by the computer to geocentric positions – but of course that can’t be done until 

the distances are known.  As soon as the distances are known, the light-time and the 

topocentric-geocentric corrections can be made.  Then, of course, one has to return to the 

beginning and recompute the distances – possibly more than once until convergence is 

reached. This section shows how to make the topocentric-geocentric correction.  

 

We have used the notation (x , y , z) for geocentric coordinates, and I shall use (x' , y' , 

z') for topocentric coordinates.  In figure XIII.3 I show Earth from a point in the 

equatorial plane, and from above the north pole.  The radius of Earth is R, and the radius 

of a small circle of latitude φ (where the observer is situated) is .cos φR   The x- and x'-

axes are directed towards the first point of Aries, �. 

 

It should be evident from the figure that the corrections are given by 

 

    ,LSTcoscos' φ−= Rxx     13.16.1 

 

    LSTsincos' φ−= Ryy     13.16.2 

 

and    .sin' φ−= Rzz      13.16.3 

 

Any observer who submits observations to the Minor Planet Center is assigned an 

Observatory Code, a three-digit number.  This code not only identifies the observer, but, 

associated with the Observatory Code, the Minor Planet Center keeps a record of the 

quantities R cos φ and R sin φ in AU.  These quantities, in the notation employed by the 

MPC, are referred to as −∆xy and −∆z respectively.  They are unique to each observing 

site. 
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FIGURE XIII.3 
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13.17    Concluding Remarks 

 

Anyone who has done the considerable work of following this chapter in detail is now 

capable of determining the elements of an elliptic orbit from three observations, if the 

orbit is an ellipse and if indeed elliptical elements can be obtained from the observations 

(which is not always the case).  No one arriving at this stage would possibly think of 

himself or herself as an expert in orbit calculations.  There is much, much more to be 

learned, and much of it will come with experience, and be self-taught or picked up from 

others.  There are questions about how to handle more than the requisite three 

observations, how to correct the elements differentially as new observations become 

available, how to apply planetary perturbations, how to handle parabolic or hyperbolic 

orbits.  Some of this material may (or may not!) be discussed in future chapters.  

However, often the most difficult thing is getting started, and calculating one’s very first 

orbit from the minimum data.  It is hoped that this chapter has helped the reader to attain 

this. 
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